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Motivation

» Objective: Systematic approach for sensor/actuator selection
» Applications
» Phasor Measurement Units in power networks

» Autonomous formations of vehicles

» Flexible wing aircraft
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Recent work

Sensor selection for parameter estimation

» Linear measurement model (Joshi, Boyd ‘09)

» Optimal experiment design (Kekatos, Giannakis, Wollenberg ‘12)

Sensor/actuator selection in dynamical systems

» Nonconvex formulation (Masazade, Fardad, Varshney ‘12)
» Adaptive selection (Chepuri, Leus ‘14)
» Maximize effect of actuators (Summers, Lygeros ‘14)

(Tzoumas, Rahimian, Pappas, Jadbabaie ‘15)

Convex characterization as SDP
» SDP formulation (Polyak, Khlebnikov, Shcherbakov ‘13)

» Discrete time (Munz, Pfister, Wolfrum ‘14)
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Sensor selection

Linear time invariant system with many potential sensors

T = Ax + d
y= Cz +n
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Sensor selection

Linear time invariant system with many potential sensors

Ax + d
y = Cx +n

Kalman filter estimates state from measured output
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Sensor selection

Linear time invariant system with many potential sensors

T = Az + d
y= Czx +n

Kalman filter estimates state from measured output

Objective: Minimize estimation error using a few sensors
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Sensor selection via regularization

minimize J(L) + 0% Z | L eil|2
i
variance of column-sparsity-promoting
estimation error penalty function

» Larger 7 selects fewer sensors

» v = 0 uses all sensors

f1-penalized optimal control - Lin, Fardad, Jovanovi¢, ACC ‘11, IEEE TAC ‘13



Observer design

T = Ax + d
y = Cx + 1 &= Ai + Ly — 9)
system observer

A~

Variance of estimation error e := (z — )
¢ = (A—LC)e +d+ Ln

J(L) = trace LllgloE (e(?) eT(t))]

Kalman filter minimizes J(L) using all sensors
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SDP Characterization
Va,V,, are process disturbance and measurement noise covariance

minir?ize trace (V3 X) + trace(V, L7 X L)

)

J(L)
subject to (A — LC)YT'X + X(A—-LC) +1 =0

X =0
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SDP Characterization
Va,V,, are process disturbance and measurement noise covariance

minirgize trace (V3 X) + trace(V, L7 X L)

)

J(L)
subject to (A — LC)YT'X + X(A—-LC) +1 =0

X =0

Change of variables Z := X L
minifrzlize trace (Vg X) + trace(V, 27 X! 2)
subject to ATX — CTZT + XA - ZC +1 =0
X =0

» Schur complement yields convex problem
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» Challenge: impose structure on L in (X, Z) coordinates

» Linear constraints on L become nonlinear on

e,
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» Challenge: impose structure on L in (X, Z) coordinates

» Linear constraints on L become nonlinear on

e,

» Column-sparsity is preserved

-
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Sensor selection - Semidefinite Program

minimize trace (V; X) + trace(V, 2" X ' Z) + ’yZHZeng

)

(X, 2)
subject to ATX — CTZT + XA - ZC +1 =0

X =0

» Promote column sparsity of Z instead of L

Polyak, Khlebnikov, Shcherbakov, ECC ‘13
Dhingra, Jovanovié¢, Luo, CDC ‘14



Computational complexity
trace(V, Z' X' Z) = trace(V;, ©)
=0
J

Worst case computational complexity: O ((n +m)®)

[m]
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Alternating Direction Method of Multipliers (ADMM)

» Splitting method for convex problems with linear constraints

Form augmented Lagrangian

L(X.ZA) = f(X.Z) + (Ah(X,2)) + ZIh(X, 2)|I}

h(X,Z) = ATX - CTZT + XA - ZC + 1



» Update variables separately

Xk = argmin  £,(X, ZF, AF)
X

ZFHL = argmin  L,(XFHL Z, AF)
z

ARFL = AR p p(XRHL ZRH

Boyd, Parikh, Chu, Peleato, Eckstein ‘11



Z-minimization

o p
minimize ’72||Zei||2 + §||ZC + 0T ZT + Wk

Jz(Z)

» Group LASSO
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Z-minimization

o p
minimize vzHZeng + §||ZC + 0T ZT + Wk

Jz(Z)

» Group LASSO

» Proximal method: iterative soft thresholding algorithm (ISTA)

Zm+l

= Samyp (27— aVI(Z™))

» Computational complexity O(n?m)
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X-minimization

minimize trace (X Vi + X“Lzky, (Zk)T> + g IAT X + X A + Ug||%

» Can formulate as SDP (worst case O(nf))

» Many sensors, m > n = nf < (n+ m)6

» Model reduction can reduce n



X-minimization

minimize trace (X Vi + X“Lzky, (Zk)T> + g IAT X + X A + Ug||%

» Can formulate as SDP (worst case O(nf))

» Many sensors, m > n = nf < (n+ m)6

» Model reduction can reduce n

» Projected Newton’s method

» Conjugate gradient (worst case O(n®))
» Inexact minimization; faster in practice

» Project onto {X : X > 0}



Extensions - Actuator selection
State feedback v = — K=z
T

Ar + Bu + d
J(K) = /0 2TQxr + u'Ru dt

» Promote row sparsity of ¥ := KX

X_l
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Extensions - Actuator selection

State feedback u = —Kux
t = Ax + Bu + d

J(K) = /0 2TQxr + u'Ru dt

» Promote row sparsity of ¥ := KX

X—l

o . . _1 T T
minimize trace(Q X) + traceRY X™'Y") + 'yZHeZYHg
subject to AX — BY + XAT —YT'BT + V; =0

X >0
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Extensions: Sensor selection for feedback control

d
System
u
z
-K Observer
» Given linear quadratic regulator v = — K2

> Select sensors to optimize closed loop performance
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Extensions: Sensor selection for feedback control

d
System
u
z
-K Observer
» Given linear quadratic regulator v = — K2

> Select sensors to optimize closed loop performance

o T y—1 .
miningize trace (Vg X) + trace(V, Z" X' Z) + 'YZ”ZGzHQ

subject to ATX — CT"Z + XA — ZC + K'TRK =0

X =0



Example - Flexible Wing Aircraft

104t

» Detect aeroelastic instability




Number of Sensors

—6-Regularized sensor selection
400 —+*—Truncation

200 1

100 1

Pct Performance Degradation

o = 0 ‘ : -
10 10 2 4 6 8 10 12
¥ Number of Sensors

» Using less than half the sensors degrades performance by only

~ 20%



Example - Mass Spring System

I

e

» Dynamics

» Sensors

T2

e

¥ = (wip1 — x) + (w1

T3

W

» Position of each mass

» Velocity of each mass

Ty

e

5

— xl) + d;
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Computation time for v = 100

S]] cwx
10 = apmm

10°

10

Computation time (s)

2

10 10
Number of states

n states and n outputs

Caomputation time (s)

10

- CVX
—=ADMM

T

Number of Sensors

50 states and m outputs

10
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Conclusions
» Convex characterization of sensor or actuator selection
» Splitting algorithm

» Solve simpler sub-problems

» Scaling dependent on number of states

Future work
» More efficient X-minimization
» Alternative splitting methods

» Joint sensor and actuator selection
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Dual Problem

g(Y') = maximize (U,Y)
efU < v

Lagrangian

L(X,Y,A,M) = trace(QX + X 'YTRY)+ (U,Y)
+ (A AX + XAT - BY —YTBT + V) — (M, X)

where M = 0

VxL] [ Q-X"WTRYX 14+ ATA +AA
VyL | — 2RYX '+ U —2BJA

Dual Problem

maximize (V,A)
subject to @ +AA+ ATA — (BIA - LU)T'R™Y(BIA - 3U) = 0
lef Ull2 <
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