# An ADMM algorithm for optimal sensor and actuator selection

Neil K. Dhingra, Mihailo R. Jovanović, and Zhi-Quan Luo



53rd Conference on Decision and Control, Los Angeles, California, 2014

## **Motivation**

- Systematic approach to selecting sensors and actuators
  - Phasor Measurement Units in power networks
  - Autonomous formations of vehicles
  - Flexible wing aircraft





## **Recent work**

### Particular measurement models

- Linear measurements
- Cramer-Rao lower bound
- Optimal experiment design

(Joshi, Boyd '09)

(Roy, Chepuri, Leus '13)

(Kekatos, Giannakis, Wollenberg '12)

### **Related** approaches

- Maximize effect of actuators
  (Summers, Lygeros '14)
- ► ADMM for nonconvex formulation (Masazade, Fardad, Varshney '12)

#### **Convex characterization as Semidefinite Program**

- ► SDP formulation (Polyak, Khlebniko
- Discrete time

(Polyak, Khlebnikov, Shcherbakov '13)

(Munz, Pfister, Wolfrum '14)

### **Problem formulation**

### LTI system with many potential actuators

$$\dot{x} = Ax + B_1 d + \frac{B_2 u}{2} u$$
$$z = \begin{bmatrix} Q^{1/2} \\ 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ R^{1/2} \end{bmatrix} u$$

**Objective:** Minimize closed loop  $\mathcal{H}_2$  norm using a **few actuators** 



### Actuator selection via regularization





variance amplification (closed loop  $\mathcal{H}_2$  norm)



<ロ> (四) (四) (三) (三) (三)

5/25

 $+ \qquad \gamma \sum_{i} \|\mathbf{e}_{i}^{T} K\|_{2}$ 

### Actuator selection via regularization

+





variance amplification (closed loop  $\mathcal{H}_2$  norm)



 $\gamma \sum_{i} \|\mathbf{e}_{i}^{T} K\|_{2}$ 





• 
$$\gamma = 0$$
 uses all actuators

Lin, Fardad, Jovanovic, ACC '11, TAC '13, CC

### State feedback $\mathcal{H}_2$ problem

minimize trace (QX) + trace $(RKXK^T)$ subject to  $(A - B_2K)X + X(A - B_2K)^T + B_1B_1^T = 0$  $X \succ 0$ 

### LMI formulation

Standard change of variables Y := KX yields convex form

minimize trace 
$$(QX)$$
 + trace  $(RYX^{-1}Y^{T})$ 

subject to  $AX - B_2Y + XA^T - Y^TB_2^T + B_1B_1^T = 0$ 

 $\mathbf{X} \succ \mathbf{0}$ 

- Challenge: impose structure on K in (X, Y) coordinates
  - Linear constraints on *K* become *nonlinear* on *Y* and *X*



Row-sparsity is preserved



#### **Actuator selection - Semidefinite Program**

$$\underset{X,Y}{\text{minimize}} \quad \underbrace{\text{trace}(QX) + \text{trace}(RYX^{-1}Y^{T}) + \gamma \sum \|\mathbf{e}_{i}^{T}Y\|_{2}}_{f(X,Y)}$$

subject to  $AX - B_2Y + XA^T - Y^TB_2^T + B_1B_1^T = 0$  $X \succ 0$ 

#### Promote row sparsity of Y instead of K

Polyak, Khlebnikov, Shcherbakov, ECC '13 Munz, Pfister, Wolfrum, TAC '14

**Computational complexity** trace( $RYX^{-1}Y^{T}$ ) = trace( $R\Theta$ )



Worst case computational complexity:  $O((n+m)^6)$ 

### **Alternating Direction Method of Multipliers (ADMM)**

Splitting method for convex functions with linear constraints

### Form augmented Lagrangian

$$\mathcal{L}_{\rho}(X,Y,\Lambda) \quad := \quad f(X,Y) \; + \; \langle \Lambda, h(X,Y) \rangle \; + \; \frac{\rho}{2} \, \|h(X,Y)\|_{F}^{2}$$

$$h(X, Y) := A X - B_2 Y + X A^T - Y^T B_2^T + B_1 B_1^T$$

Update variables separately

$$X_{k+1} = \underset{X}{\operatorname{arg\,min}} \mathcal{L}_{\rho}(X, Y_{k}, \Lambda_{k})$$
$$Y_{k+1} = \underset{Y}{\operatorname{arg\,min}} \mathcal{L}_{\rho}(X_{k+1}, Y, \Lambda_{k})$$
$$\Lambda_{k+1} = \Lambda_{k} + \rho h(X_{k+1}, Y_{k+1})$$

#### Boyd, Parikh, Chu, Peleato, Eckstein'11

◆□▶ ◆□▶ ◆目▶ ◆日▶ ▲□ ◆ ��

## **Y-minimization**

$$\underset{\boldsymbol{Y}}{\text{minimize }} \gamma \sum \| \mathbf{e}_i^T \boldsymbol{Y} \|_2 + \frac{\rho}{2} \| B_2 \boldsymbol{Y} + \boldsymbol{Y}^T B_2^T + V_k \|_F^2$$

Group LASSO

## **Y-minimization**

$$\underset{\boldsymbol{Y}}{\text{minimize }} \gamma \sum \|\mathbf{e}_i^T \boldsymbol{Y}\|_2 + \frac{\rho}{2} \|B_2 \boldsymbol{Y} + \boldsymbol{Y}^T B_2^T + V_k\|_F^2$$

Group LASSO

► Proximal method: sequentially approximate with minimize  $\gamma \sum \|e_i^T \mathbf{Y}\|_2 + \frac{1}{2} \|\mathbf{Y} - \bar{V}_k\|_F^2$ 

• Computational complexity of  $\mathcal{O}(n^2m)$ 

## X-minimization

$$\underset{X}{\text{minimize trace}} \left( X Q + X^{-1} Y_k^T R Y \right) + \frac{\rho}{2} \| A X + X A^T + U_k \|_F^2$$

► Can formulate as SDP (worst case computational complexity  $\mathcal{O}(n^6)$ )

## X-minimization

 $\underset{X}{\text{minimize trace}} \left( X Q + X^{-1} Y_k^T R Y \right) + \frac{\rho}{2} \|A X + X A^T + U_k\|_F^2$ 

• Can formulate as SDP (worst case computational complexity  $\mathcal{O}(n^6)$ )

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ・ タ

- Projected Newton's method
  - Find search directions with conjugate gradient  $(n^5)$
  - Project onto  $\{X : X \succ 0\}$

### **Sensor Selection: SDP Formulation**

Change of coordinates  $Z := X_o L$ 



## **Example - Flexible Wing Aircraft**



Select subset of sensors to minimize estimation error



• Using less than half the sensors degrades performance by only  $\sim 20\%$ 

## **Example - Mass Spring System**



► Dynamics

$$\ddot{p}_i = (p_{i+1} - p_i) + (p_{i-1} - p_i) + d_i$$

◆□> ◆□> ◆注> ◆注> ○注

19/25

#### Sensors

- Position of each mass
- Velocity of each mass

Computation time for  $\gamma = 100$ 



*n* states and *n* outputs

50 states and *m* outputs

## Conclusions

- Convex characterization of sensor or actuator selection
- Splitting algorithm
  - Solve simpler sub-problems
  - Scaling dependent on number of states

### **Future work**

- ► More efficient *X*-minimization
- Customized Interior Point Method
- Alternative splitting methods

## Acknowledgements

イロト イボト イヨト イヨト 一日

Support:

- NASA JPFP Fellowship
- MnDRIVE Graduate Scholars Program
- ▶ NSF ECCS-1407958

Collaboration on aircraft example

- Marty Brenner, NASA
- Claudia Moreno and Harald Pfifer

## **Dual Problem**

$$g(Y) = \underset{e_i^T U \leq \gamma}{\operatorname{maximize}} \langle U, Y \rangle$$

Lagrangian

$$L(X, Y, \Lambda, M) = \operatorname{trace}(QX + X^{-1}Y^{T}RY) + \langle U, Y \rangle + \langle \Lambda, AX + XA^{T} - BY - Y^{T}B^{T} + V \rangle - \langle M, X \rangle$$

where  $M \succeq 0$ 

$$\begin{bmatrix} \nabla_X L \\ \nabla_Y L \end{bmatrix} = \begin{bmatrix} Q - X^{-1} Y^T R Y X^{-1} + A^T \Lambda + \Lambda A \\ 2R Y X^{-1} + U - 2B_2^T \Lambda \end{bmatrix}$$

Dual Problem

maximize 
$$\langle V, \Lambda \rangle$$
  
subject to  $Q + \Lambda A + A^T \Lambda - (B_2^T \Lambda - \frac{1}{2}U)^T R^{-1} (B_2^T \Lambda - \frac{1}{2}U) \succeq 0$   
 $\|e_i^T U\|_2 \le \gamma$ 

### **Sensor Selection**

$$\dot{x} = Ax + B_1 d$$
  
$$y = Cx + \eta$$

Observer estimates state from output

$$\dot{\hat{x}} = A\hat{x} + L(y - \hat{y})$$

### **Sensor Selection**

$$\dot{x} = Ax + B_1 d$$
  
$$y = Cx + \eta$$

Observer estimates state from output

$$\dot{\hat{x}} = A\hat{x} + L(y - \hat{y})$$

Steady-state variance of the estimation error  $x - \hat{x}$ 

$$J(L) = \operatorname{trace} \left( X_o B_1 B_1^T + X_o L L^T \right)$$

• Observability gramian  $X_o \succ 0$ 

$$(A - LC)^T X_o + X_o (A - LC) + I = 0.$$

### **Sensor Selection: SDP Formulation**

Change of coordinates  $Z := X_o L$ 

minimize trace  $(X_o B_1 B_1^T + X_o^{-1} Z Z^T) + \gamma \sum_{i=1}^{1} ||Z e_i||_2$ 

subject to  $A^T X_o + X_o A - C^T Z - ZC + I = 0$  $X_o \succ 0$ 

