



## MOTIVATION

- Select **optimal subset** of potential sensors/actuators
  - Sensor/Actuator types
  - Sensor/Actuator locations
- Applications
  - Heterogeneous robotic networks
  - Phasor Measurement Units in power networks
  - Sensors and actuators in flexible aircraft wings

## **ACTUATOR SELECTION**

MODEL

• Linear system with many actuators

 $\dot{x} = Ax + B_1d + B_2u$ 

**PERFORMANCE MEASURE** 

• Steady-state variance amplification

$$\lim_{t \to \infty} \mathcal{E}\left(x^T(t) Q x(t) + u^T(t) R u(t)\right)$$

**OBJECTIVE** 

• Identify **row-sparse** state-feedback controller

$$u = -Kx$$

to balance:

**PERFORMANCE:** variance amplification

**SPARSITY:** 

number of actuators

**OPTIMIZATION PROBLEM** 

minimize

J(K)

variance

amplification

 $\gamma \sum \|\mathbf{e}_i^T K\|_2$ 

sparsity-promoting penalty function

 $\gamma > 0$ 

variance amplification vs sparsity tradeoff

# **Optimal sensor and actuator selection in dynamic networks**

## NEIL DHINGRA, MIHAILO R. JOVANOVIĆ, AND ZHI-QUAN LUO

