

Identification of sparse representations of consensus networks

SUOS
CULTORES
SCIENTIA
CORONAT

Neil Dhingra, Fu Lin, Makan Fardad, and Mihailo R. Jovanović

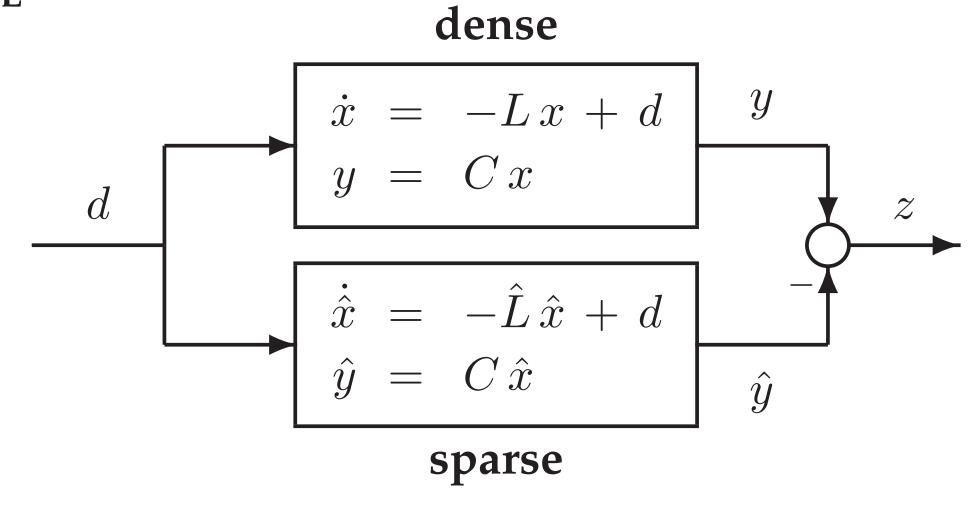
PROBLEM FORMULATION

STOCHASTICALLY FORCED UNDIRECTED NETWORKS

$$\dot{x} = -Lx + d$$

$$\int (I - (1/n) \mathbf{1} \mathbf{1}^T)$$

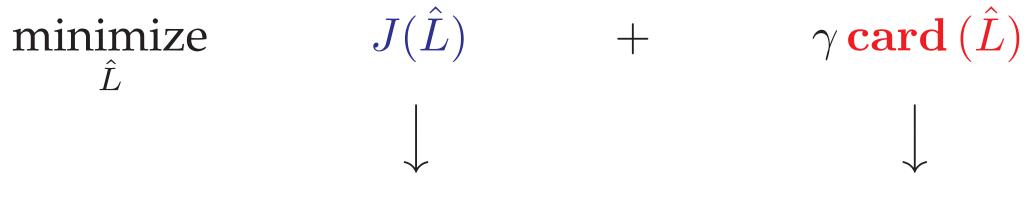
OBJECTIVE



• Identify **subgraph** that strikes a balance between

variance amplification $d \to z$ number of edges in the subgraph

OPTIMIZATION PROBLEM



variance amplification

sparsity-promoting penalty function

APPROACH

CHALLENGES

• $J(\hat{L})$ – nonconvex; $\mathbf{card}(\hat{L})$ – nonconvex and nonsmooth

CONVEX RELAXATION OF CARDINALITY

• Replace card with weighted ℓ_1 norm

$$egin{array}{ll} ext{minimize} & J(\hat{L}) \; + \; \gamma \sum_{i,\,j} W_{ij} \, |\hat{L}_{ij}| \ & & \end{array}$$

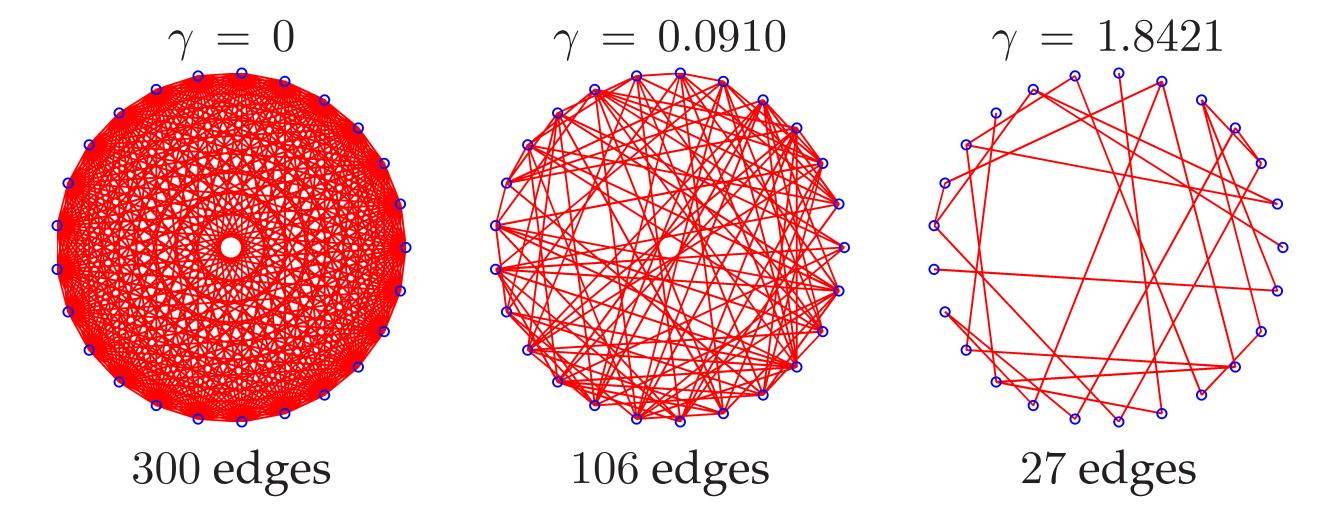
Re-weighted algorithm: $W_{ij}^+ := (|\hat{L}_{ij}| + \epsilon)^{-1}$

PERFORMANCE VS. SPARSITY

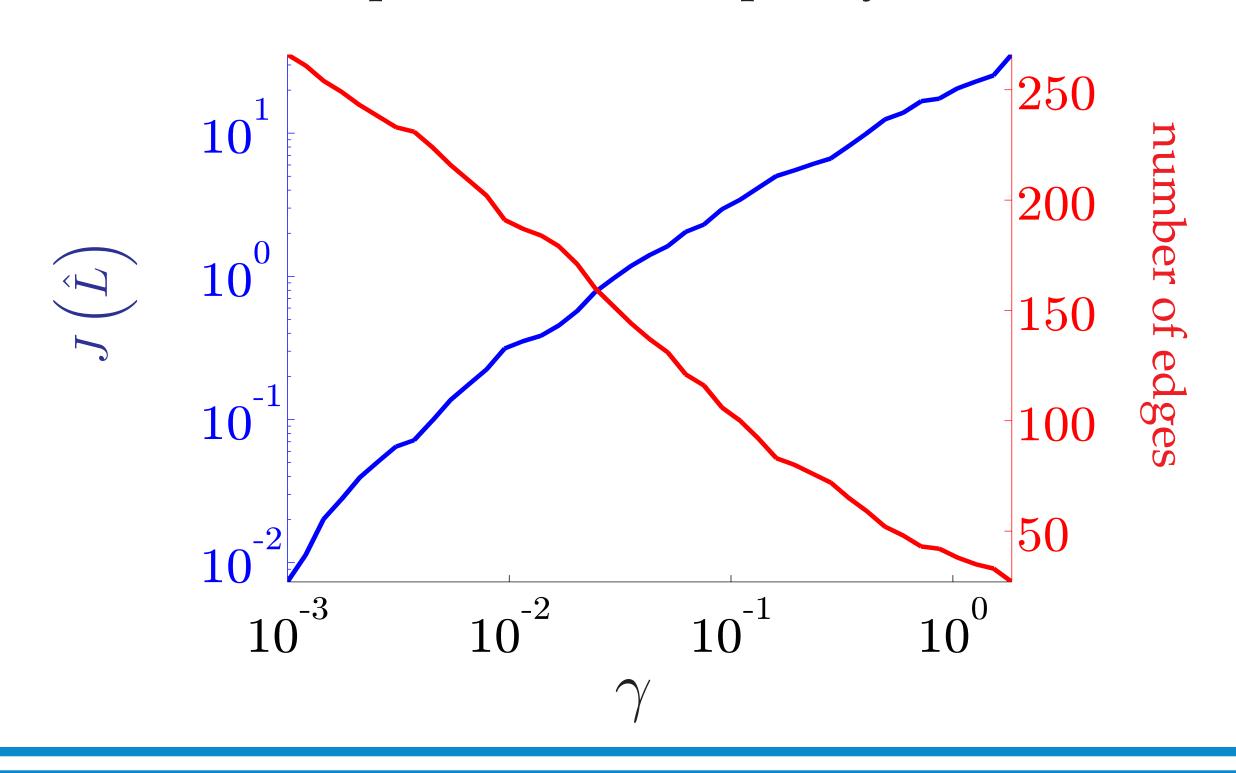
- Identify a γ -parameterized family of subgraphs
- Larger γ subgraphs with **fewer edges** but **worse performance**

EXAMPLES

Complete graph with 25 nodes and random edge weights



performance vs. sparsity:



ALGORITHM

ALTERNATING DIRECTION METHOD OF MULTIPLIERS (ADMM)

- 1. Sparse Structure Identification
 - Introduce additional variable/constraint

minimize
$$J(\hat{L}) + \gamma \sum_{i,j} W_{ij} |\hat{L}_{ij}|$$
 subject to $\hat{L} - M = 0$

• Form augmented Lagrangian

$$\mathcal{L}_{\rho} = J(\hat{L}) + \gamma \sum_{i,j} W_{ij} |\hat{L}_{ij}| + \text{trace} (\Lambda^{T}(\hat{L} - M)) + \frac{\rho}{2} ||\hat{L} - M||_{F}^{2}$$

• Use **ADMM iterations** to minimize \mathcal{L}_{ρ}

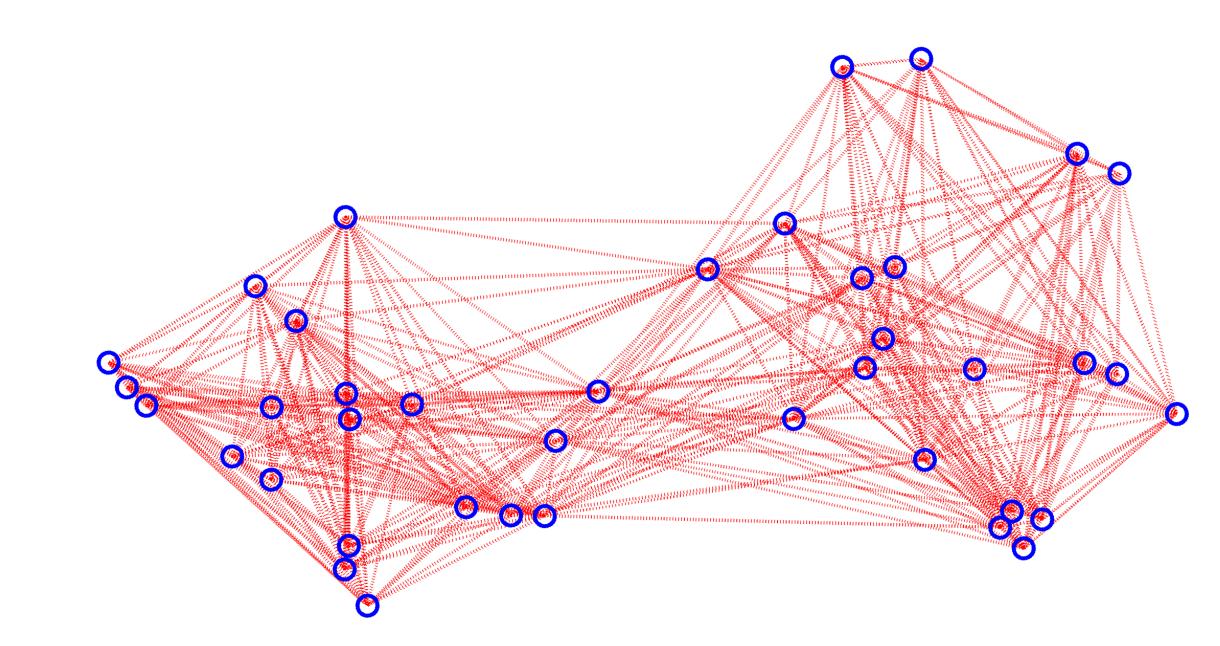
$$\hat{L}^{k+1} = \underset{\hat{L}}{\operatorname{argmin}} \mathcal{L}_{\rho}(\hat{L}, M^k, \Lambda^k)$$
 Differentiable; BFGS
$$M^{k+1} = \underset{M}{\operatorname{argmin}} \mathcal{L}_{\rho}(\hat{L}^{k+1}, M, \Lambda^k)$$
 Separable; soft-thresholding
$$\Lambda^{k+1} = \Lambda^k + \rho(\hat{L}^{k+1} - M^{k+1})$$

- 2. Polishing
 - Find optimal \hat{L} for identified sparsity structure \hat{S}

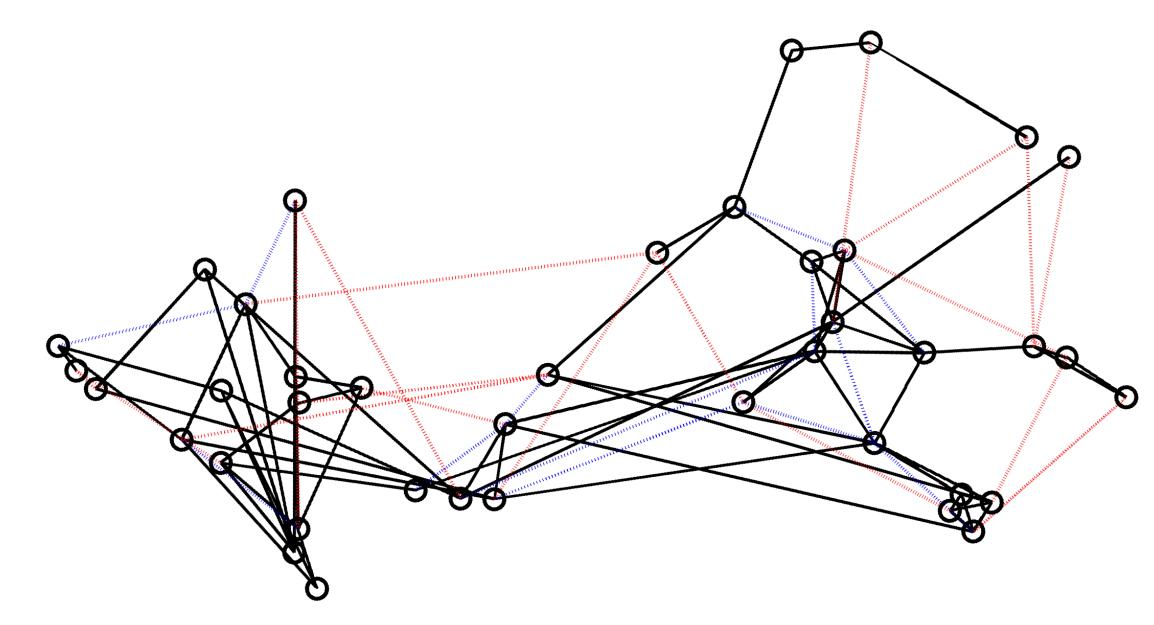
minimize $J(\hat{L})$ subject to $\hat{L} \in \hat{\mathcal{S}}$

ADMM vs. Truncation

- Truncation discard the smallest edge weights and polish
- 40-node, 425-edge graph with edge weights inversely related to the Euclidean distance between connected nodes



sparse subgraphs with 79 edges:



• ADMM and truncation identify \{ 65 common edges \ 14 different edges

	Original	Truncation	ADMM
Number of Edges	425	79	79
Graph Diameter	3	9	6
Average Path Length	1.53	3.49	2.88
$J(\hat{L})$	0	10.39	4.10
Algebraic Connectivity	0.307	0.079	0.225

COMMENTS

- Truncation ignores effects of increasing path lengths
- ADMM preserves long-range interactions

ACKNOWLEDGEMENTS

- NASA Harriett G. Jenkins Predoctoral Fellowship
- NSF CMMI-09-27720
- NSF CMMI-09-27509