Optimization and control of large-scale networked systems

Neil K. Dhingra

UNIVERSITY OF MINNESOTA

Final Oral Presentation December 20, 2016

▶ u – control input

(accelerator/brake)

- ▶ *u* − control input
- y measured output

(accelerator/brake) (speedometer)

- ▶ u control input
- y measured output
- d disturbance input

(accelerator/brake) (speedometer) (hills, rain, etc.)

- ▶ u control input
- ▶ y measured output
- d disturbance input
- ζ regulated output

(accelerator/brake) (speedometer) (hills, rain, etc.) (difference from desired speed)

- ▶ u control input
- ▶ y measured output
- d disturbance input
- ζ regulated output

(accelerator/brake) (speedometer) (hills, rain, etc.) (difference from desired speed) Networks of systems

- Many distinct subsystems
- ► Traditional control one *centralized* controller

Distributed control

- ▶ Independent controllers must coordinate
- ▶ Here, simple communication topology

Structured control

▶ Separate subsystems have associated controllers

Structured control

- ▶ Separate subsystems have associated controllers
- ▶ Traditional controller design: all-to-all communication architecture

Structured control

- ▶ Separate subsystems have associated controllers
- ▶ Want: sparse communication architecture

Applications

SATELLITE FORMATIONS

POWER NETWORKS

COMBINATION DRUG THERAPY

CONTROL OF BUILDINGS

6/64

Outline

- I STRUCTURED OPTIMAL CONTROL
 - regularization
 - convex classes
 - example: combination drug therapy
- II NONCONVEX REGULARIZED PROBLEMS
 - proximal augmented Lagrangian
 - ▶ example: edge addition in directed consensus networks
- III CONVEX REGULARIZED PROBLEMS
 - ► Second-order saddle point dynamics
 - ▶ example: LASSO

STRUCTURED OPTIMAL CONTROL

8/64

Effect of control

4回 → 4回 → 4 回 → 4 回 → 1 回 → 9 へ (~ 9 / 64

Effect of control

◆□▶ ◆□▶ ◆■▶ ◆■▶ ●■ のQで 9/64

Static feedback

$$\dot{\psi} = A\psi + B_1 d + B_2 u$$

$$\zeta = \begin{bmatrix} Q^{1/2} \\ 0 \end{bmatrix} \psi + \begin{bmatrix} 0 \\ R^{1/2} \end{bmatrix} u$$

State-feedback: $u = -X\psi$

$$\blacktriangleright F(X) = -B_2 X$$

•
$$D(X) = -R^{1/2}X$$

Static feedback

$$\dot{\psi} = A\psi + B_1d + B_2u$$
$$\zeta = \begin{bmatrix} Q^{1/2} \\ 0 \end{bmatrix}\psi + \begin{bmatrix} 0 \\ R^{1/2} \end{bmatrix}u$$

State-feedback: $u = -X\psi$

$$\blacktriangleright F(X) = -B_2 X$$

•
$$D(X) = -R^{1/2}X$$

Output feedback: $y = C_2 \psi$, u = -Xy

$$\blacktriangleright F(X) = -B_2 X C_2$$

$$\blacktriangleright D(X) = -R^{1/2}XC_2$$

Performance metrics

DESIGN controller x to minimize effect of d on ζ

▶ CLOSED-LOOP \mathcal{H}_2 Norm

$$f_2(x) := \lim_{t \to \infty} \mathbb{E}\left(\zeta^T(t) \zeta(t)\right)$$

- \blacktriangleright Variance amplification $d \to \zeta$
- ▶ 'Average' measure

Performance metrics

DESIGN controller x to minimize effect of d on ζ

▶ CLOSED-LOOP \mathcal{H}_2 NORM

$$f_2(x) := \lim_{t \to \infty} \mathbb{E}\left(\zeta^T(t) \zeta(t)\right)$$

- Variance amplification $d \to \zeta$
- ▶ 'Average' measure
- CLOSED-LOOP \mathcal{H}_{∞} Norm

$$f_{\infty}(x) := \sup_{\|d\|_{\mathcal{L}_2}=1} \frac{\|\zeta\|_{\mathcal{L}_2}}{\|d\|_{\mathcal{L}_2}}$$

- ▶ Worst-case amplification $d \rightarrow \zeta$
- Peak of frequency response

Structure via regularization

- f possibly nonconvex; cts-differentiable
- g convex; often non-differentiable
- $\gamma \ge 0$ performance vs structure tradeoff

Structure via regularization

- f possibly nonconvex; cts-differentiable
- g convex; often non-differentiable
- $\gamma \ge 0$ performance vs structure tradeoff

- x design variable (e.g., feedback gain matrix)
- Tx enforce structure in *image* of x

Typical regularizers

EXAMPLES

• $g(x) = ||x||_1 = \sum |x_i|$

sparse x

 $\blacktriangleright g(x) = I_{\mathcal{C}}(x)$

convex constraints

 $\blacktriangleright g(X) = \|X\|_*$

low rank x

Typical regularizers

Examples	
• $g(x) = x _1 = \sum x_i $	sparse x
$\blacktriangleright g(x) = I_{\mathcal{C}}(x)$	convex constraints
$\blacktriangleright g(X) = \ X\ _*$	low rank x
Applications	
► Compressed sensing	LASSO
► Machine learning	regularized logistic regression
▶ 'Netflix problem'	matrix completion

Negahban, Yu, Wainwright, Ravikumar, '09

Limited communication via sparse feedback control

Structured \mathcal{H}_{∞} control

KYP LEMMA: $f_{\infty}(x) \leq \lambda$ iff $\exists P \succ 0$ s.t. $\begin{bmatrix} C^T C + (A - F(x))^T P + P(A - F(x)) & PB \\ B^T P & -\lambda^2 I \end{bmatrix} \prec 0$

Structured \mathcal{H}_{∞} control

KYP LEMMA: $f_{\infty}(x) \leq \lambda$ iff $\exists P \succ 0$ s.t. $\begin{bmatrix} C^T C + (A - F(x))^T P + P(A - F(x)) & PB \\ B^T P & -\lambda^2 I \end{bmatrix} \prec 0$

Convexity via Z := PF(x)

$$\begin{bmatrix} C^T C + A^T P - Z^T + PA - Z & PB \\ B^T P & -\lambda^2 I \end{bmatrix} \prec 0$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うくで

15/64

Similar change of variables for \mathcal{H}_2

Structure via regularization

- State-feedback $F(X)P = -B_2XP = -B_2Z$
- Structural constraints on X bilinear in P, Z

$\mathbf{Actuator} / \mathbf{sensor \ selection}$

- Row-sparsity preserved
- Select inputs which yield best closed-loop performance

▶ Efficient algorithm for actuator/sensor selection SDPs

Dhingra, Jovanović, Luo, CDC '14

Structure via regularization

DIAGONAL P: preserve sparsity structure

• Conservative (except for \mathcal{H}_{∞} control of positive systems)

▶ Bilinear box constraints $X_{ij} = Z_{ij}/P_{jj} \in [-1, 1]$

Tanaka & Langbort, TAC '11

Decentralized control of positive systems

$$\dot{\psi} = (A - F(x)) \psi + B_1 d$$

 $\zeta = Q^{1/2} \psi$

▶ Positive systems: $\psi(0) \ge 0, d(t) \ge 0$ implies $\psi(t) \ge 0$ for all t

イロト 不同下 イヨト イヨト ヨー うらつ

•
$$B_1, Q^{1/2} \ge 0$$

- ► A Metzler (off-diagonal elements nonnegative)
- Decentralized control F(x) diagonal

EXAMPLES

- ▶ Leader selection in directed consensus networks
- Combination drug therapy

Combination drug therapy

$$\dot{\psi} = \left(A + \sum_{k=1}^{m} x_k F_k\right) \psi + d$$

• Mutant ψ_i mutates to ψ_j at rate A_{ji}

• Drug x_k kills ψ_i at rate $(F_k)_{ii}$

Rantzer & Bernhardsson CDC '14 Jonsson, Rantzer, Matni, Murray CDC '14 20/64

Decentralized control of positive systems

Background

- Combination drug therapy
- \mathcal{L}_1 control
- Contributions
 - $\mathcal{H}_2/\mathcal{H}_\infty$ norms convex in x
 - Leader selection
 - Robust control
 - Time-varying x(t)

Jonsson et al CDC '14

Rantzer & Bernhardsson CDC '14 Colaneri et al., AUT '14

> Dhingra, Colombino, Jovanović ECC '16

> Dhingra, Colombino, Jovanović CDC '16

Colombino, Dhingra, Jovanović, Smith CDC '16

Dhingra, Colombino, Jovanović, Rantzer, Smith SCL '16

Combination drug therapy for HIV

Balance **performance** with **structure**

35 HIV mutants, 5 drugs

Model credit: Klein et al '12

Proximal operator

PROXIMAL OPERATOR

$$\mathbf{prox}_{\gamma\mu g}(v) := \operatorname{argmin}_{x} \gamma g(x) + \frac{1}{2\mu} \|x - v\|^2$$
Proximal operator

PROXIMAL OPERATOR

$$\mathbf{prox}_{\gamma\mu g}(v) := \operatorname{argmin}_{x} \gamma g(x) + \frac{1}{2\mu} \|x - v\|^2$$

▶ ℓ_1 NORM - SOFT-THRESHOLDING

$$\mathbf{prox}_{\gamma\mu g}(v) = \begin{cases} v - \gamma\mu & v \ge \gamma\mu \\ 0 & |v| < \gamma\mu \\ v + \gamma\mu & v \le -\gamma\mu \end{cases}$$

Parikh & Boyd, FnT Optimization '14

Proximal gradient method

minimize $f(x) + \gamma g(x)$

GENERALIZES GRADIENT DESCENT

$$x^{k+1} = \mathbf{prox}_{\gamma \alpha_k g} (x^k - \alpha_k \nabla f(x^k))$$

step-size α_k

Proximal gradient method

minimize $f(x) + \gamma g(x)$

GENERALIZES GRADIENT DESCENT

$$x^{k+1} = \mathbf{prox}_{\gamma \alpha_k g} (x^k - \alpha_k \nabla f(x^k))$$

step-size α_k

- convergence for f with Lipschitz cts gradient
- simple if \mathbf{prox}_q easy to compute
- cannot be applied to g(Tx)
- ▶ acceleration with constraints (e.g., stability) challenging

Beck & Teboulle, SIAM J. Imaging Sci. '08

Combination drug therapy – Budget

Optimize $f_2(x)$ or $f_{\infty}(x)$ subject to budget constraint

minimize f(x)

subject to
$$\sum x_k \leq 1$$

 $x_k \geq 0$

Antibody	$x_{\mathcal{H}_2}$	$x_{\mathcal{H}_{\infty}}$
3BC176	0.5952	0.9875
PG16	0	0
45-46G54W	0.2484	0.0125
PGT128	0.1564	0
10-1074	0	0
Performance	$x_{\mathcal{H}_2}$	$x_{\mathcal{H}_{\infty}}$
$f_2(x)$	0.6017	1.1947
$f_{\infty}(x)$	0.1857	0.1084

Combination drug therapy – regularized

Select drugs:

 $x(\gamma) = \operatorname{argmin} f(x) + x^T x + \gamma \sum_k w_k |x_k|$

Increase γ until desired sparsity POLISHING: design doses

> minimize $f(x) + x^T x$ subject to $sp(x) \in sp(x(\gamma))$

Combination drug therapy – regularized

Select drugs:

$$x(\gamma) = \operatorname{argmin} f(x) + x^T x + \gamma \sum_k w_k | x_k$$

Increase γ until desired sparsity POLISHING: design doses

minimize $f(x) + x^T x$

subject to $\operatorname{sp}(x) \in \operatorname{sp}(x(\gamma))$

NONCONVEX REGULARIZED PROBLEMS

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ つへで 27 / 64 Example: edge addition in directed consensus networks

• Distributed information exchange $\dot{\psi} = -L_p \psi$

▶ If balanced, nodes approach average initial value, $\psi_i(t) \to \bar{\psi}$

Consensus networks

Dynamics

$$\dot{\psi} = -L_p \psi + d$$

PENALIZE DEVIATION FROM AVERAGE

$$\zeta = \begin{bmatrix} I - (1/n) \mathbb{1} \mathbb{1}^T \\ \end{bmatrix} \psi$$

Consensus networks

DYNAMICS

$$\dot{\psi} = -(L_p + L_c)\psi + d$$

PENALIZE DEVIATION FROM AVERAGE

$$\zeta = \begin{bmatrix} I - (1/n) \mathbb{1} \mathbb{1}^T \\ -R^{1/2} L_c \end{bmatrix} \psi$$

ADD EDGES TO NETWORK

- $F(w) = L_c$ graph Laplacian of edges w
- w = Tx parametrizes balanced graphs

Consensus networks

 $\min_{x} \inf_{x} f_2(x) + \gamma \|Tx\|_1$

Performance:

• \mathcal{H}_2 norm of deviations from average

Structure:

- ▶ Balanced L_c
- Minimize number of edges

Auxiliary variable

 $\begin{array}{ll} \underset{x,z}{\text{minimize}} & f(x) + \gamma \, g(z) \\ \text{subject to} & Tx - z = 0 \end{array}$

▶ benefit: **decouples** f and g

Augmented Lagrangian

$$\mathcal{L}_{\mu}(x,z;y) = f(x) + g(z) + \langle y, Tx - z \rangle + \frac{1}{2\mu} ||Tx - z||^2$$

Method of multipliers

$$(x^{k+1}, z^{k+1}) = \underset{x,z}{\operatorname{argmin}} \mathcal{L}_{\mu}(x, z; y^{k})$$
$$y^{k+1} = y^{k} + \frac{1}{\mu} (Tx^{k+1} - z^{k+1})$$

Method of multipliers

$$(x^{k+1}, z^{k+1}) = \underset{x,z}{\operatorname{argmin}} \mathcal{L}_{\mu}(x, z; y^{k})$$
$$y^{k+1} = y^{k} + \frac{1}{\mu} (Tx^{k+1} - z^{k+1})$$

- ▶ guaranteed convergence to local minimum
- **•** challenge: *joint* minimization over x and z

33 / 64

æ

33 / 64

2

x

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで 33 / 64

$$\begin{aligned} x^{k+1} &= \underset{x}{\operatorname{argmin}} \quad \mathcal{L}_{\mu}(x, \, z^{k}; \, y^{k}) & \text{differentiable} \\ z^{k+1} &= \underset{z}{\operatorname{argmin}} \quad \mathcal{L}_{\mu}(x^{k+1}, \, z; \, y^{k}) & \operatorname{prox}_{\gamma \mu g}(\cdot) \\ y^{k+1} &= y^{k} \, + \, \frac{1}{\mu} \left(T x^{k+1} \, - \, z^{k+1} \right) \end{aligned}$$

$$\begin{aligned} x^{k+1} &= \underset{x}{\operatorname{argmin}} \quad \mathcal{L}_{\mu}(x, z^{k}; y^{k}) & \text{differentiable} \\ z^{k+1} &= \underset{z}{\operatorname{argmin}} \quad \mathcal{L}_{\mu}(x^{k+1}, z; y^{k}) & \operatorname{prox}_{\gamma \mu g}(\cdot) \\ y^{k+1} &= y^{k} + \frac{1}{\mu} \left(Tx^{k+1} - z^{k+1} \right) \end{aligned}$$

- convenient for distributed implementation
- convergence speed influenced by μ
- challenge: convergence for nonconvex f

Hong, Luo, Razaviyayn, SIAM J. Optimiz. '16

35 / 64

2

■ つへC 35/64

35 / 64

э

35 / 64

э

35 / 64

э

$$\begin{aligned} x^{k+1} &= \underset{x}{\operatorname{argmin}} \quad \mathcal{L}_{\mu}(x, z^{k}; y^{k}) & \text{differentiable} \\ z^{k+1} &= \underset{z}{\operatorname{argmin}} \quad \mathcal{L}_{\mu}(x^{k+1}, z; y^{k}) & \underset{\gamma \mu g}{\operatorname{prox}}_{\gamma \mu g}(\cdot) \\ y^{k+1} &= y^{k} + \frac{1}{\mu} (Tx^{k+1} - z^{k+1}) \end{aligned}$$

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>

Proximal operator and Moreau envelope

PROXIMAL OPERATOR

$$\mathbf{prox}_{\gamma\mu g}(v) := \operatorname{argmin}_{x} \gamma g(x) + \frac{1}{2\mu} \|x - v\|^2$$

Moreau envelope

$$M_{\gamma\mu g}(V) := \inf_{x} \gamma g(x) + \frac{1}{2\mu} ||x - v||^2$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで 37/64

Proximal operator and Moreau envelope

PROXIMAL OPERATOR

$$\mathbf{prox}_{\gamma\mu g}(v) := \underset{x}{\operatorname{argmin}} \ \gamma g(x) + \frac{1}{2\mu} \|x - v\|^2$$

Moreau envelope

$$M_{\gamma\mu g}(V) := \inf_{x} \gamma g(x) + \frac{1}{2\mu} \|x - v\|^2$$

continuously differentiable even when g is not

$$\nabla M_{\gamma\mu g}(v) = \frac{1}{\mu} \left(v - \mathbf{prox}_{\gamma\mu g}(v) \right)$$

Parikh & Boyd, FnT in Optimization '14

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Example

▶ Soft-thresholding – proximal operator for ℓ_1 norm

$$\underset{x_{i}}{\text{minimize}} \quad \sum_{i} \left(\gamma |x_{i}| + \frac{1}{2\mu} (x_{i} - v_{i})^{2} \right)$$

separability \Rightarrow element-wise analytical solution

Proximal augmented Lagrangian

$$\mathcal{L}_{\mu}(x, z; y) = f(x) + \underbrace{\gamma g(z) + \frac{1}{2\mu} \|z - (Tx + \mu y)\|^2}_{-\frac{1}{2}} - \frac{\mu}{2} \|y\|^2$$

Minimize over \boldsymbol{z}

$$z^{\star} = \operatorname{prox}_{\gamma\mu g}(Tx + \mu y)$$
Proximal augmented Lagrangian

$$\mathcal{L}_{\mu}(x, z; y) = f(x) + \underbrace{\gamma g(z) + \frac{1}{2\mu} \|z - (Tx + \mu y)\|^2}_{-\frac{1}{2}} - \frac{\mu}{2} \|y\|^2$$

Minimize over z

$$z^{\star} = \operatorname{prox}_{\gamma\mu g}(Tx + \mu y)$$

EVALUATE \mathcal{L}_{μ} at z^{\star}

$$egin{array}{lll} \mathcal{L}_{\mu}(x;\,y) &:= & \mathcal{L}_{\mu}(x,\,z^{\star}(x,y);\,y) \ &= & f(x) \ + \ \gamma \, M_{\gamma\mu g}(Tx \ + \ \mu y) \ - \ rac{\mu}{2} \, \|y\|^2 \end{array}$$

continuously differentiable in x and y

Proximal augmented Lagrangian MM

$$\begin{aligned} x^{k+1} &= \underset{x}{\operatorname{argmin}} \ \mathcal{L}_{\mu}(x; y^{k}) \\ y^{k+1} &= y^{k} \ + \ \frac{1}{\mu} \left(Tx^{k+1} \ - \ \mathbf{prox}_{\gamma\mu g}(Tx^{k+1} \ + \ \mu y^{k}) \right) \end{aligned}$$

Proximal augmented Lagrangian MM

$$\begin{aligned} x^{k+1} &= \underset{x}{\operatorname{argmin}} \ \mathcal{L}_{\mu}(x; y^{k}) \\ y^{k+1} &= y^{k} \ + \ \frac{1}{\mu} \left(Tx^{k+1} \ - \ \mathbf{prox}_{\gamma\mu g}(Tx^{k+1} \ + \ \mu y^{k}) \right) \end{aligned}$$

- nonconvex f: convergence to local minimum
- \blacktriangleright x-minimization step: differentiable problem
- ▶ adaptive μ update

・ロト <
同 ト <
言 ト <
言 ト 、
言 か へ
で
41 / 64
</p>

・ロト < 回ト < 国ト < 国ト < 国ト 目 の Q ()
41 / 64

41 / 64

э

41/64

Directed consensus network

IDENTIFY EDGES

$$x(\gamma) = \min_{x} f_2(x) + \gamma ||Tx||_1$$

DESIGN EDGE WEIGHTS

$$x^{\star}(\gamma) = \min_{x} f_{2}(x)$$

subject to $\operatorname{sp}(Tx) \in \operatorname{sp}(Tx(\gamma))$

Directed consensus network

Comparison with ADMM

Comparison with ADMM

Proximal augmented Lagrangian-based MM

- Guaranteed convergence
- Computational savings from reduced outer iterations

CONVEX REGULARIZED PROBLEMS

・ロト ・ (部)・ (主)・ (主)・ 注 の (C
46 / 64

$\mathcal{L}_{\mu}(x;y)$

$\mathcal{L}_{\mu}(x;y)$

$$x^1 = \operatorname*{argmin}_{x} \mathcal{L}_{\mu}(x; y^0)$$

$$y^1 = y^0 + (1/\mu) \nabla_y \mathcal{L}_\mu(x^1; y^0)$$

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 1 □ ● 9 0 0 47 / 64

$$x^2 = \operatorname{argmin}_{x} \mathcal{L}_{\mu}(x; y^1)$$

$$y^{\star} = y^{1} + (1/\mu)\nabla_{y}\mathcal{L}_{\mu}(x^{2};y^{1})$$

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 1 □ ● 9 0 0 47 / 64

$$x^{\star} = \operatorname*{argmin}_{r} \mathcal{L}_{\mu}(x; y^{\star})$$

Primal-descent dual-ascent cartoon

$$(x^{1}, y^{1}) = (x^{0}, y^{0}) - \alpha(\nabla_{x} \mathcal{L}_{\mu}(x^{0}; y^{0}), -\nabla_{y} \mathcal{L}_{\mu}(x^{0}; y^{0}))$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 48 / 64

Primal-descent dual-ascent cartoon

$$(x^{\star}, y^{\star}) = (x^{1}, y^{1}) - \alpha(\nabla_{x} \mathcal{L}_{\mu}(x^{1}; y^{1}), -\nabla_{y} \mathcal{L}_{\mu}(x^{1}; y^{1}))$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 48 / 64

Primal-descent dual-ascent

ARROW-HURWICZ-UZAWA TYPE GRADIENT FLOW

$$\left[\begin{array}{c} \dot{x} \\ \dot{y} \end{array}\right] \;=\; \left[\begin{array}{c} -\nabla_x \,\mathcal{L}_\mu(x;y) \\ \nabla_y \,\mathcal{L}_\mu(x;y) \end{array}\right]$$

- \blacktriangleright continuous rhs even for non-differentiable g
- convenient for distributed implementation
- strictly convex convergence
- ▶ strongly convex conditions for exponential convergence

Arrow, Hurwicz, Uzawa, '59 Nedic & Ozdaglar, TAC '09 Wang & Elia, CDC '11 Feijer & Paganini, AUT '10 Cherukuri, Gharesifard, Cortés, SCL '15 49/64

- ▶ First-order methods slow for high accuracy solutions
- ► Exploit second-order information

SECOND-ORDER METHODS FOR REGULARIZED PROBLEMS

- ► Proximal Newton Lee, Sun, Saunders, '14
- ► Forward-backward envelope

Stella, Themelis, Patrinos, '16

Assumptions:

- $T \in \mathbb{R}^{m \times n}$ full row rank
- $\blacktriangleright~g$ separable
- f twice cts diffible, strictly cvx

$$\nabla \mathcal{L}_{\mu}(x;y) = \begin{bmatrix} \nabla f(x) + \frac{1}{\mu} T^{T} \left(Tx + \mu y - \mathbf{prox}_{\mu\gamma g} (Tx + \mu y) \right) \\ Tx - \mathbf{prox}_{\mu\gamma g} (Tx + \mu y) \end{bmatrix}$$

Assumptions:

- $T \in \mathbb{R}^{m \times n}$ full row rank
- \blacktriangleright g separable
- f twice cts diffible, strictly cvx

$$\nabla \mathcal{L}_{\mu}(x;y) = \begin{bmatrix} \nabla f(x) + \frac{1}{\mu} T^{T} \left(Tx + \mu y - \mathbf{prox}_{\mu\gamma g} (Tx + \mu y) \right) \\ Tx - \mathbf{prox}_{\mu\gamma g} (Tx + \mu y) \end{bmatrix}$$

Generalize derivative of $\mathbf{prox}_{\mu g}$ with P

$$\nabla_P^2 \mathcal{L}_{\mu} = \begin{bmatrix} \nabla^2 f + \frac{1}{\mu} T^T (I - P) T & T^T (I - P) \\ (I - P) T & -\mu P \end{bmatrix}$$

n negative m positive eigenvalues

Dini derivatives

 $P = \operatorname{diag}(p)$ and p_i is a Dini derivative $\mathbf{prox}_{\mu q}(v)$

$$p_i = \lim_{\varepsilon \to 0^{\pm}} \frac{\mathbf{prox}_{\mu\gamma g}(v+\varepsilon) - \mathbf{prox}_{\mu\gamma g}(v)}{\varepsilon}$$

Dini derivatives

 $P = \operatorname{diag}(p)$ and p_i is a Dini derivative $\mathbf{prox}_{\mu q}(v)$

Continuous time – differential inclusion

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} \in -(\nabla_P^2 \mathcal{L}_\mu)^{-1} \nabla \mathcal{L}_\mu(x;y)$$

- convergence to saddle point of $\mathcal{L}_{\mu}(x;y)$
- Lyapunov function $\|\nabla \mathcal{L}_{\mu}(x;y)\|^2$

Continuous time – differential inclusion

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} \in -(\nabla_P^2 \mathcal{L}_\mu)^{-1} \nabla \mathcal{L}_\mu(x;y)$$

- convergence to saddle point of $\mathcal{L}_{\mu}(x;y)$
- Lyapunov function $\|\nabla \mathcal{L}_{\mu}(x;y)\|^2$

Discrete time – algorithm

$$\begin{bmatrix} x^{k+1} \\ y^{k+1} \end{bmatrix} = \begin{bmatrix} x^k \\ y^k \end{bmatrix} - \alpha \begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix}$$

where $[\tilde{x}^T \ \tilde{y}^T]^T \in -(\nabla_P^2 \mathcal{L}_\mu)^{-1} \nabla \mathcal{L}_\mu(x;y)$

Efficient second-order updates for $g = \|\cdot\|_1$ $T = I, p_i \in \{0, 1\}$

Efficient second-order updates for $g = \|\cdot\|_1$

 $T = I, p_i \in \{0, 1\}$

► Equality

Efficient second-order updates for $g = \|\cdot\|_1$

 $T = I, \, p_i \in \{0,1\}$

- ► Equality
- Limited matrix inversion (independent of μ)

Efficient second-order updates for $g = \|\cdot\|_1$

 $T = I, \, p_i \in \{0,1\}$

- Equality
- ▶ Limited matrix inversion (independent of μ)
- Matrix-vector multiplication

Second-order algorithm

Key question: how to assess progress?

▶ Merit function: primal-dual augmented Lagrangian

$$\mathcal{M}_{\mu}(x, z; y, y_{\rm e}) := \mathcal{L}_{\mu}(x, z; y_{\rm e}) + \frac{1}{2\mu} \|Tx - z + \mu(y_{\rm e} - y)\|^2$$

 \triangleright y_e – Lagrange multiplier estimate

Gill & Robinson, Comput. Optim. Appl. '12

Second-order algorithm

Key question: how to assess progress?

▶ Merit function: primal-dual augmented Lagrangian

$$\mathcal{M}_{\mu}(x,z;y,y_{\rm e}) := \mathcal{L}_{\mu}(x,z;y_{\rm e}) + \frac{1}{2\mu} \|Tx - z + \mu(y_{\rm e} - y)\|^2$$

▶ $y_{\rm e}$ – Lagrange multiplier estimate

Gill & Robinson, Comput. Optim. Appl. '12

Adaptively decrease μ

Armand & Omheni, Optim. Method Softw. '15

LASSO

Note: require $A^T A$ full rank
LASSO

Note: require $A^T A$ full rank

LASSO – dependence on γ

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで 58/64

 $x \in \mathbb{R}^n, A \in \mathbb{R}^{2n \times n}, A^T A$ full rank

Conclusions

STRUCTURED OPTIMAL CONTROL

- ▶ Regularization to induce structure
- Convex problems
 - Actuator/sensor selection
 - Decentralized control of positive systems
 - ► Symmetric systems

PROXIMAL AUGMENTED LAGRANGIAN

- ▶ Differentiable method of multipliers
- Arrow-Hurwicz-Uzawa updates
- ▶ Dini derivatives second-order method

・ロト ・四ト ・ヨト ・ヨト

 $62 \, / \, 64$

æ

・ロト < 回ト < 国ト < 国ト < 国ト 三 の Q (*) 63 / 64

