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Abstract— We develop a method for designing symmetric
modifications to linear dynamical systems for the purpose
of optimizing H2 performance. For systems with symmetric
dynamic matrices this problem is convex. While in the absence
of symmetry the design problem is not convex in general, we
show that the H2 norm of the symmetric part of the system
provides an upper bound on the H2 norm of the original system.
We then study the particular case where the modifications are
given by a weighted sum of diagonal matrices and develop
an efficient customized algorithm for computing the optimal
solution. Finally, we illustrate the efficacy of our approach on
a combination drug therapy example for HIV treatment.

Index Terms— combination drug therapy, networks, sparse
controller synthesis, structured design, symmetric systems.

I. INTRODUCTION

Structured feedback control design problems are challeng-
ing and, in general, nonconvex. Consequently, significant
effort has been devoted to identifying classes of problems
which admit a convex formulation. These include funnel
causal and quadratically invariant systems [1], [2], positive
systems [3], structured and sparse consensus and synchro-
nization networks [4]–[6], and optimal sensor/actuator selec-
tion [7], [8]. In this paper, we identify another class of op-
timal control problems that admit a convex characterization.
We also examine how design problems for these systems can
be used to inform design problems for more general systems.

We are interested in minimizing an H2 performance
objective via symmetric modifications to the dynamical
generator of a linear time-invariant system. The symmetric
modification is a linear function of a design variable which is
subject to additional penalties. Following much recent work
on sparse feedback synthesis [9], [10], we penalize the `1
norm of the design variable to promote sparsity.

An interesting problem instance arises in the design of
combination drug therapy strategies for the treatment of the
Human Immunodefficiency Virus (HIV). Recent advances is
the modeling of disease [11] motivate the design of drug
dosages in a manner which accounts for the evolutionary
dynamics of the disease. While several recent papers focus
on designingH∞ or suboptimal L1 controllers [12]–[14], the
H2 problem for these systems still has not been addressed.

The proposed formulation also encompasses several prob-
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lems that arise in networked control systems; see Section II-
B. For example, the leader selection problem seeks to iden-
tify nodes which have the most profound influence on the
network performance [15]. Although analytical expressions
exist for the selection of one or two leaders [16], the
selection of a higher numbers of leaders amounts to solving a
combinatorial optimization problem. Moreover, the problem
of adding undirected edges to an existing consensus network
also fits into this framework [17]. In this case, the objective
is to add a sparse set of undirected edges in order to improve
network performance [18].

It is worth noting that even with symmetric modifications
to the system dynamics, the H2 problem is in general non-
convex. Our approach is to instead examine the symmetric
part of the dynamics. We show that this formulation provides
an upper bound on the performance of the original problem,
and when the underlying system is not strongly non-normal,
it is a good approximation. We also demonstrate that the
restriction to symmetric systems makes the design problem
a semidefinite program (SDP). We develop a scalable algo-
rithm for designing diagonal modifications to the dynamics
and apply it to the HIV combination therapy problem.

The rest of this paper is structured as follows. Section II
states the general form of the problem we consider. Sec-
tion III presents results relating systems to their symmetric
parts and justifies our use of these symmetric systems for
design. In section IV, we present a relevant application,
form the primal and dual optimization problems, and develop
a customized algorithm to solve it. Section V applies our
algorithm to real world data. Finally, section VI offers
concluding remarks and outlines future research directions.

II. PROBLEM FORMULATION

A. General form

We consider a class of systems,

ẋ = (A − K(u))x + d (1)

where K(u) ∈ Rn×n is a symmetric matrix that is a linear
function of u ∈ Rm, x(t) ∈ Rn is the state vector, d(t) ∈ Rp
is a white stochastic disturbance with E (d(t1) dT (t2)) =
Iδ(t1− t2), and E is the expectation operator. Our objective
is to design a stabilizing K(u) that minimizes the steady-
state variance of the state x,

lim
t→∞

E
(
xT (t)x(t)

)
.

We also impose a quadratic penalty, uTRu with R � 0, to
limit the magnitude of u, and an `1 penalty, ‖u‖1 :=

∑
i |ui|,



to promote sparsity in u. The positive parameter γ specifies
the importance of sparsity relative to system performance.

Our design problem is formulated as

minimize
u

J(u) + uTRu + γ ‖u‖1
subject to A − K(u) Hurwitz.

(2)

Here, J(u) is the H2 norm of system (1) from d to x,

J(u) := trace(X)

and X is the controllability gramian,

(A − K(u))X + X (A − K(u))
T

+ I = 0.

Since in (2) we do not impose penalty on the L2 norm of
the control effort −K(u)x, for γ = 0 the problem (2) is
different from the Linear Quadratic Regulator problem.

In general, the optimal control problem (2) is non convex.
However, it is instructive to examine

ẋ = (As − K(u))x + d (3)

where As := (A+AT )/2 is the symmetric part of A. As we
show below, designing a symmetric K(u) for system (3) is
a convex optimization problem. The H2 norm of system (3)
is given by trace (Xs) where,(

As − K(u)
)
Xs + Xs

(
As − K(u)

)
+ I = 0.

Since both As and K(u) are symmetric,

Xs = − 1

2
(As − K(u))

−1

and the design problem (3) becomes

minimize
1

2
trace

(
(K(u)−As)−1

)
+ uTRu + γ ‖u‖1

K(u) − As � 0.
(4)

Taking the Schur complement casts (4) as an SDP,

minimize
Θ, u

trace (Θ) + uTRu + γ ‖u‖1

subject to

[
Θ I
I K(u)−As

]
� 0

(5)

where we drop the constant factor 1/2 for compactness.

In Section III, we show that stability of the symmetric
system (3) implies stability of the corresponding original
system (1). Furthermore, the H2 norm of the symmetric
system is an upper bound on the H2 norm of the original
system. Finally, when the difference between A and As is
small (of the order ε, O(ε)), the H2 norms of systems (1)
and (3) differ only by O(ε2).

If K(u) is not symmetric, Ks(u) := 1
2 (K(u) + K(u)T )

can be used in (4) to find its solution u?. The closed-loop
systems (1), with K(u?), and (3), with Ks(u

?), will have
the same relationship as when K(u) is symmetric. However,
the neglected effect of the asymmetric component of K(u)
makes the degree of conservatism unpredictable.

B. Applications

We next provide examples to illustrate that the considered
problem structure arises in several applications.

1) Design of edges in consensus networks: The problem
of adding undirected edges to an existing consensus network
can be cast in this problem form. The dynamics are,

ẋ = −
(
L + ED(u)ET

)
x + d

where L is a graph Laplacian which contains information
about which nodes are connected to each other, E contains
information about which edges may be added to the network,
and D(u) is a diagonal matrix of added edge weights [17].

2) Leader selection in consensus networks: In this setup,
it is desired to identify influential nodes in networks. These
special nodes, so-called leaders, can be equipped with ad-
ditional information in order to influence the network be-
havior in a beneficial way. One application is in vehicular
formations, where the objective is for the vehicles to gather
at a certain point. The ‘leaders’ are equipped with absolute
measurements (e.g., from GPS units) and the other nodes
have only relative measurements (e.g., their distance from
certain neighbors). The dynamics are given by

ẋ = − (L + D(u)) x + d

where L is a graph Laplacian and D(u) is a nonnegative
diagonal matrix whose nonzero entries identify the leaders.
In contrast to earlier work [15] which treated this problem
directly as a combinatorial problem, leader selection with
our formulation would amount to a convex relaxation.

3) Combination drug therapy design for HIV treatment:
The problem of designing drug dosages for treating HIV can
be cast as [13], [14],

ẋ =

(
A −

m∑
k= 1

ukDk

)
x + d.

Here, the elements of x represent populations of HIV mu-
tants. The diagonal elements of A represent each mutant’s
replication rate and the off diagonal elements of A represent
the probability of mutation from one mutant to another. The
components of the vector u are dosages of different drugs,
where Dk is a diagonal matrix containing information about
how efficiently drug k kills each HIV mutant.

III. SYMMETRIC SYSTEM DESIGN

We justify the use of the symmetric synthesis problem (4)
for the design of controllers for the original system (1). First
we show that the stability of the symmetric system implies
stability of the full system.

Lemma 1: Let the symmetric part of A be Hurwitz. Then,
A is Hurwitz.

Proof: We show this by contradiction. Since the sym-
metric part of A, As := (A + AT )/2 is symmetric and
Hurwitz, it is negative definite,

v∗As v < 0 for all v 6= 0.



Assume that A is not Hurwitz. Then there is a v such that
Av = λv with Re(λ) ≥ 0. Furthermore, v∗Av = λv∗v.
However,

v∗Av = v∗Asv + 1
2 v
∗ (A − AT ) v

= v∗Asv + j Im(λ) ‖v‖22.

Since As ≺ 0, v∗Asv cannot have a nonnegative real part.

Note that Lemma 1 only provides a sufficient condition.
It is standard that A may be Hurwitz even if As is not.

We next show that the H2 norm of the symmetric sys-
tem (3) is an upper bound on the H2 norm of the system (1).
First, we present a useful theorem from linear algebra [19].

Lemma 2: Let A be any matrix and let As = 1
2 (A+AT )

be the symmetric part of A. Then

‖eA‖ ≤ ‖eAs‖

for every unitarily invariant norm.
Proof: See Theorem IX.3.1 in [19].

The statement about the H2 norms of systems (1) and (3)
is a simple corollary of Lemma 2.

Corollary 3: When systems (1) and (3) are stable, the H2

norm of (1) is bounded from above by the H2 norm of (3).
Proof: Recall that the H2 norm of a system,

ẋ = Ax + d

with A Hurwitz is given by trace(X) where

AX + XAT + I = 0

and
X =

∫ ∞
0

eAt eA
T t dt. (6)

Using the linearity of the trace and of integration, we can
rewrite the expression for the H2 norm as,

trace

(∫ ∞
0

eAt eA
T tdt

)
=

∫ ∞
0

‖eAt‖2F dt.

Since the Frobenius norm is unitarily invariant, by Lemma 2
‖eAt‖2F ≤ ‖eAst‖2F for any t and therefore,∫ ∞

0

‖eAt‖2F dt ≤
∫ ∞

0

‖eAst‖2F dt.

Since the right-hand-side is the H2 norm of system (3), this
completes the proof.

Remark 1: Lemma 2 relies on the fact that the sum of the
k largest eigenvalues of Xs is larger than the sum of the
k largest eigenvalues of X for any integer k. As a result,
Corollary 3 does not extend to a general state penalty matrix
Q where the H2 norm is given by trace (QX). For the same
reason, the result requires E (d(t1) dT (t2)) = Iδ(t1 − t2).

A. Small asymmetric perturbations

We next show that in addition to being an upper bound, the
H2 norm of the symmetric and full systems are close when
A is nearly normal. In what follows, we show that when a

normal system is subject to an anti-symmetric perturbation
of O(ε), the first order correction to the H2 norm is zero.
A similar result appeared in [20] for the design of an
interconnection graph for synchronizing oscillator networks.
We present a result for systems with normal dynamical gen-
erators An. Since a normal matrix An commutes with ATn ,
this class includes symmetric systems considered in [20].

Proposition 4: Let An be a normal Hurwitz matrix. The
O(ε) correction to the H2 norm of the system

ẋ = An x + d

resulting from an O(ε) anti-symmetric perturbation Aa to
An is zero.

Proof: The H2 norm of the above system is given by
trace(Xn) where,

AnXn + XnA
T
n + I = 0. (7)

From Lemma 1 in [21], Xn = −(An + An)−1. Perturbing
An by a small anti-symmetric matrix εAa yields a small
correction term εX̃ in the controllability gramian. Collecting
the O(ε) terms from the Lyapunov equation,

(An + εAa)(Xn + εX̃) + (Xn + εX̃)(An + εAa)T + I = 0.

recovers the linear equation,

AnX̃ + X̃An + AaXn + XnA
T
a = 0.

Since Aa = −ATa , the O(ε) correction to the H2 norm
vanishes,

trace (X̃) = trace
(
Xn (AaXn + XnA

T
a )
)

= trace
(
(Aa − Aa)X2

n

)
= 0

IV. COMBINATION DRUG THERAPY FOR HIV TREATMENT

A. Background

In this section, we focus on the problem described in
Section II-B.3,

ẋ =

(
A −

m∑
k=1

ukDk

)
x + d.

where x is a vector of HIV mutant populations, A contains
their evolutionary dynamics, and Dk are diagonal matrices
containing information about drug treatment. The entry Aii
determines how fast mutant i replicates, and the entry Aij
quantifies the probability of mutation from mutant j into
mutant i.

Each element uk of the control input u represents the
amount of drug k administered to the patient. The ith element
of the diagonal of Dk specifies how quickly drug k destroys
mutant i.

Combination drug therapy is desirable because using only
one drug often leads to the mutant population adapting to the
weaknesses of that particular drug [22]. However, because of
potential side effects and drug-drug interactions, it is not de-



sirable to use a large number of different drugs. Furthermore,
large doses can have additional side effects [23].

Since the probability of mutation is often orders of
magnitude less than the rate of replication [11], using a
symmetric model here is justified. We are therefore interested
in minimizing the H2 norm of the system,

ẋ = (As − diag{Du})x + d.

where D = [d1 · · · dr], di = diag{Di} and As = 1
2 (A +

AT ). We use the diag{·} operator to denote either the
diagonal entries of a matrix or a diagonal matrix with
elements of the vector on its diagonal. Since this system
is now symmetric, it fits into the framework of problem (4).

B. Primal and dual optimization problems

We first state the problem in a form which is convenient
for implementation of the alternating direction method of
multipliers (ADMM), a technique well-suited to large-scale
problems. ADMM has been recently successfully applied to
sparse control synthesis problems [8], [9]. Using the auxiliary
variable G := −As + diag{Du}, problem (4) becomes,

minimize trace (G−1) + 1
2 u

TRu + γ1Tu

subject to G + As − diag{Du} = 0

G � 0, u ≥ 0.

(P)

Since a negative drug dosage is not possible, the `1 norm of
u is determined by 1Tu. The Lagrangian is,

L(G, u, Y, λ) = trace (G−1) + 1
2 u

TRu + γ1Tu −

λTu + 〈Y,G+As − diag{Du}〉

where 〈·, ·〉 denotes the standard inner product between two
matrices, Y = Y T , and λ ≥ 0. We omit the Lagrange
multiplier associated with the positive definiteness of G
for brevity; this omitted dual variable will become a slack
variable and it will result in a requirement on the positive
definiteness of Y . We substitute the equivalent expression,

trace (Y diag{Du}) = yTDu

where y = diag{Y } into the Lagrangian, differentiate it with
respect to G and u and set the resulting gradients to zero,

0 = −G−2 + Y
0 = Ru + γ 1 − λ − DT y.

The optimal G and u are thus given by

G = Y −1/2

u = R−1(DT y − γv).

Substituting these expressions into the Lagrangian yields

2 trace (Y
1
2 ) + trace (As Y )

− 1
2 (DT y − γ1 + λ)TR−1(DT y − γ1+ λ).

The dual problem requires maximization of the above ex-
pression over λ ≥ 0 and Y � 0. However, since λ must be
positive, it is only nonnegative when DT y− γ1 is negative.
Therefore, λ can be eliminated and the dual problem can be

written as,

maximize 2 trace (Y
1
2 ) + trace (AY )

− 1
2 max(DT y−γ1, 0)TR−1(DT y − γ1)

subject to Y � 0.
(D)

C. Alternating direction method of multipliers

To apply ADMM to (P), we first form the corresponding
augmented Lagrangian,

Lρ(G, u, Y ) := trace (G−1) + uTRu + γ 1Tu

+ 〈Y,G+As − diag{Du}〉

+
ρ

2
‖G+As − diag{Du}‖2F .

Relative to the standard Lagrangian, Lρ contains an ad-
ditional quadratic penalty on the violation of the linear
constraint. The positive parameter ρ specifies the magnitude
on the constraint violation penalty at each iteration.

The ADMM iteration uses the update sequence [24]

Gk+1 = argmin
G

Lρ(G, uk, Yk)

uk+1 = argmin
u

Lρ(Gk+1, u, Yk)

Yk+1 = Yk + ρ (Gk+1 +A− diag{Duk+1})

to find the optimal solution to the original problem. The
stopping criteria depend on the primal residual, which quan-
tifies how well Gk and uk satisfy the linear constraint, and
the dual residual, which quantifies the difference between uk
and uk−1. We refer the reader to [24] for details.

This algorithm is advantageous because the subprob-
lems are much simpler than the original problem. The
G-minimization step has an explicit solution, the u-
minimization step takes a standard form for which there are
efficient algorithms, and the Y -update step is algebraic.

1) G-minimization: The G-minimization step amounts to
solving,

minimize
G

trace (G−1) +
ρ

2
‖G− Vk‖2F

subject to G � 0

where Vk := −As + diag{Duk}− 1
ρYk. Seting the gradient,

−G−2 + ρG − Vk

to zero is an explicit exercise with the positive definiteness
constraint. Since the powers of G appear with no coeffi-
cients, the optimal G has the same eigenstructure as Vk. Its
eigenvalues are determined by the real positive solution to
the cubic equation

ρ λ3
i + σi λ

2
i − 1

where σi is the corresponding eigenvalue of Vk. By the
convexity of the G-minimization problem, there can be only
one real positive solution to the above equation.



2) u-minimization: The u-minimization step amounts to
solving,

minimize
u

γ 1Tu+ uTRu+
ρ

2
‖Du− wk‖22.

where wk := gk+1 + a + (1/ρ)yk, gk = diag{Gk}, a =
diag{A}, and yk = diag{Yk}. The objective function is the
sum of a quadratic term and an `1 norm: a problem form is
commonly referred to as LASSO. This problem has attracted
lots of attention in recent years and there are many efficient
methods for computing its solution.

We employ a proximal gradient method known as Iterative
Soft-Thresholding (ISTA) [25]. At each point ū, the smooth
part of the objective function is linearized and a proximal
term is added to obtain,

minimize
β

2
‖u − ū‖2F + 〈f(ū), u〉 + γ ‖u‖1

where, f(ū) is the gradient of the smooth part of (8),

f(ū) = (ρDTD + R)ū − DT (yk − ρ(gk + a))

This approximation has an explicit minimizer; the update of
the ith element of u is given by

ui = max (ūi − f/β − γ/β, 0) .

3) Computational complexity: The worst-case complexity
of generic SDP solvers is O(n6), where n is the dimen-
sion of the positive definite constraint. In contrast, the G-
minimization takes O(n3) operations because it requires
an eigenvalue decomposition, the u-minimization step takes
O(nr) operations, and the Y -update step takes O(n2) oper-
ations.

V. AN EXAMPLE

A. HIV example

Following the example given in [13], [14] based on [26],
we examine a system with 35 mutants and 5 potential types
of drugs. The diagonal entries are 0.5 and the off diagonal
elements range from O(10−8) to O(10−6). The structure of
the matrix A is shown in Fig. 1; clearly A is not symmetric.

We next use our algorithm to design control inputs u
for the symmetric system with varying levels of the spar-
sity promoting parameter γ. As γ is increased, sparsity
is prioritized over H2 performance and therefore the H2

performance degrades. In Fig. 2, we show the difference in
H2 performance between the symmetric and original systems
as a function of γ. In this problem, the symmetric model is
a very good approximation of the original system, even up
to extremely large levels of γ.

Since the off-diagonal entries of A are small, we ar-
tificially increase them by a constant factor to study our
approach for systems with larger degrees of asymmetry. We
take,

Ac = c(A− I ◦A) + 0.5(I ◦A)

where c is a constant factor and ◦ is the Hadamard (element
wise) product. This modification means that Ac does not

Fig. 1. Sparsity structure of the matrix A and its symmetric counterpart
As. The elements of A are shown with blue dots, and the elements of As

are shown with red circles.

have physically relevant implications for the drug synthesis
problem, but it illustrates the utility of our approach using
a realistic problem structure. Figure 3 compares the H2

performance for c = 105, 1.4×106, and 1.9×107. Compared
to the diagonal entries of Ac, the maximum off-diagonal
element is of the same order, one order of magnitude higher,
and two orders of magnitude higher, respectively.

When the off-diagonal elements are of the same order
of magnitude or smaller than the diagonal elements, there
is almost no difference between the symmetric and full
models. As the off-diagonal elements get larger, the fidelity
of the approximation suffers. Unsurprisingly, as the system
becomes more asymmetric, the symmetric approximation
becomes more conservative [27].

We note that for a realistic synthesis problem, γ would
be varied to find sparsity structures for u. Once a desired
sparsity structure is identified, (4) would be performed with
γ = 0 but u constrained to have that particular sparsity
structure. This process, known as polishing or de-biasing,
yields u with a desired sparsity structure that provides better
performance than u, with the same structure, that came from
solving (4).

VI. CONCLUDING REMARKS

We have introduced an approach to designing symmetric
additions to dynamical systems for the purpose of optimizing
the H2 norm of the closed-loop system. We showed that
the symmetric system inherits many of the properties of the
original system; in particular, that it is a convex upper bound
on the original design problem. However, this approximation
can be very conservative if A is highly non-normal. We
show the utility of our approach on a HIV combination drug
therapy treatment design example.

There are many exciting avenues for future development.
In particular, we are exploring how to establish a bound on



Fig. 2. Difference inH2 norm between the symmetric and original systems.
Different controllers were designed as a function of γ, and the results were
normalized using the H2 norm of the original system.

Fig. 3. The solid lines are the H2 norms of the symmetric systems and the
dotted lines are the H2 norms of the original systems. The blue ×, red ◦,
and magenta � designate c = 105, 1.4× 106, and 1.9× 107, respectively.

the difference between the original and symmetric systems,
especially for positive systems.
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