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Abstract— We consider a class of positive systems in which
the control signal enters bilinearly with the state. Such dynamics
arise naturally, for example, from modeling the evolutionary
dynamics of HIV in the presence of drug therapy. For this
class of system, we formulate an infinite horizon optimal control
problem and show that the optimal control signal is constant
over time. We further extend our results to the case of uncertain
dynamics and provide a characterization of the optimal robust
controller.

I. INTRODUCTION

This work is motivated by recent developments focusing
on combination drug therapy design for HIV treatment [1]–
[9] and robust control for positive systems [10], [11]. These
advancements provide a suitable framework for modeling
the evolution of an HIV population in terms of a bilinear
positive system in which drug therapy is represented by a
decentralized controller.

The design of unconstrained decentralized controllers for
positive systems is known to be convex [12]. However,
the design of drug therapy imposes additional structural
constraints on the controller which the methodology in [12],
in general, cannot handle. In [5]–[7], the authors approached
this problem by designing suboptimal L1 andH∞ controllers
which satisfy such structural constraints. In [8], we showed
that the designing an H2 optimal controller for only the
symmetric component of the model provides a convex upper
bound for the original problem. In [9] we built on [3],
[4] and showed convexity of the structured H2 and H∞
optimal control problems for positive systems and developed
algorithms for controller design.

In [5]–[9], either a constant control signal is assumed or
heuristics are used to introduce time dependance. In this
work, we show that such a constant input is in fact optimal
for the induced power norm over all almost-periodic control
signals. Finally, we use our advancements in [10], [11] to
develop methods to design controllers which account for
uncertainty in the model and in the control input.

II. PROBLEM FORMULATION

We first present the class of bilinear positive systems we
study and then present the main result and a sketch of the
proof. Consider the system

ẋ = (A + D(u))x + Bd, (1)

where A ∈ Rn×n is a Metzler matrix, D : Rm → Dn×n
is a diagonal matrix which is linear function of u, B is a

nonnegative matrix, and Q,R � 0 are nonnegative matrices.
We define the performance output of (1) as,

zud :=

[
Q

1
2

0

]
x+

[
0

R
1
2

]
u,

given a control signal u ∈ Bm2 and a disturbance d ∈ Br2. The
set Bm2 is a suitable subset of power signals known as the
space of Besicovitch almost periodic functions [13], which
is a Hilbert space with inner product

〈u, v〉 = lim
T→∞

1

T

∫ T

0

uT (t) v(t) dt.

We define our performance metric as the induced power
norm of the system,

J∞(u) := sup
‖d‖2pow≤1

‖zud‖2pow.

where the power semi-norm of a signal v is given by

‖v‖2pow, := lim sup
T→∞

1

T

∫ T

0

vT (t)v(t) dt. (2)

The performance metric J∞(u) measures the optimal
response to the worst case persistent disturbance that can
affect the system. We are now ready to formulate the optimal
control problem.

Problem 1 (Optimal control problem): Find the control
signal u(t) = µ(x(t)) that minimizes J∞(u).

III. MAIN RESULT

We can now state the main technical result of this work,
namely that a constant input u(t) = ū solves Problem 1.

Theorem 1: If there exist ū ∈ Rm such that (A+D(ū)) is
Hurwitz, then the power-induced norm, J∞(u), is minimized
over u by a constant function u(t) = ū? for all t ≥ 0.

Proof: [Sketch of the proof] The proof is divided into
three main parts:
• Show that the the worst case disturbance is always

constant.
• Prove that given a constant disturbance, the power norm

of the output is a convex function of the control signal
u(t).

• Show that given a constant disturbance, the best con-
stant control signal u(t) = ū∗(t) is a local minimum
for the power norm of the output over all u(t) ∈ Bm2 .
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IV. SOLUTION TO THE OPTIMAL CONTROL PROBLEM

Since Problem 1 is solved by a constant input u(t) =
ū, system (1) subject to the optimal control signal is a
time invariant system and the maximum power amplification
coincides with the H∞ norm of the system. Because it is a
positive system, this is given by the gain of the system with
the input d(t) = v where v is the right maximum singular
vector of Q

1
2 (A + D(ū))−1B. Since u(t) is time invariant,

‖R̄ 1
2u(t)‖2pow = ūTRū, and therefore,

J∞(ū) = σ̄2
(
Q

1
2 (A+D(ū))

−1
B
)

+ ūTRū.

The function J∞ is convex over a constant u and is con-
tinuously differentiable when the graph associated with A is
strongly connected [9].

Since J∞(ū) is not always differentiable, subgradient
methods [14] can be used to find a solution.

Proposition 2: Let D be a linear operator and Acl := A+
D(ū) be Hurwitz. Then,

∂J∞(ū) =

{
2σ̄cl

∑
i

αiD
† (A−1

cl Bviw
T
i CA

−1
cl

)
+ 2Rū∣∣∣∣ wTi (CA−1

cl B
)
vi = σ̄cl, α ∈ P

}
(3)

where D†(u) is the adjoint of D(u), σ̄cl = σ̄(Q
1
2A−1

cl B)
and P is the probability simplex defined by

P :=

α | αj ≥ 0,
∑
j

αj = 1

 .

For further discussion of the algorithms, we refer the
interested reader to [9, Section VI], where we discuss the use
of proximal methods [15], [16] to solve optimization prob-
lems of the form of Problem 1 augmented with nonsmooth
regularizers.

V. ROBUST CONTROL PROBLEM

In this section we tackle the robustness problem and we
show that, exploiting the properties of positive systems, the
robust optimal control problem is convex and no harder to
solve than the standard optimal control problem. We add
uncertainties ∆A and δu to the system (1)

ẋ = ((A+ ∆A) + D(u+ δu))x + Bd, (4)

where

∆A =

 δ11 · · · δ1n
...

. . .
...

δn1 · · · δnn


represents the uncertainty in the A matrix and δu represents
the uncertainty of the control signal.

We will bound the uncertainty as |δij | < αij for all (i, j) ∈
{1, . . . , n}2 and |δuk

| < βk for all k ∈ {1, . . . ,m} with
αij ≥ 0 and βk ≥ 0. Let us define the set of admissible
perturbations as

∆ := {(∆A, δu) | ‖δij‖ ≤ αij , |δuk
| < βk }

and

Ã :=

 α11 · · · α1n

...
. . .

...
αn1 · · · αnn

 , β =

 β1

...
βm


For fixed ∆A and δu and input signal u, we denote by
J∞(u ; ∆A, δu) the induced gain of system (4). The robust
optimal control problem is as follows.

Problem 2 (Robust optimal control problem): Find the
control signal u(t) = µ(x(t)) that minimizes J∞(u; ∆A, δu)
for the worst-case uncertainty (∆A, δu) ∈∆,

min
u

max
(∆A,δu)∈∆

J∞(u ; ∆A, δu).

We now characterize the solution to this problem.
Theorem 3: Assume that D(u) is elementwise nonpositive

when u is elementwise nonnegative. Provided there exist ū
such that (A+ Ã)+D(ū−β) is Hurwitz, the solution to the
Robust Optimal Control Problem 2 is given by the solution
to the Optimal Control Problem 1 applied to the system

ẋ =
(

(A+ Ã) + D(u− β)
)
x + Bd.

Proof: [Sketch of the proof] We first show that the worst
case uncertainty is always (∆A, δu) = (Ã,−β). From there,
the proof is immediate.

In the next section we provide and example and intuition
for the main results.

VI. COMBINATION DRUG THERAPY FOR HIV

As shown in [1], [5], the problem of designing drug
dosages for treating HIV can be modeled with the following
bilinear system

ẋ =

(
A −

m∑
k= 1

ukDk

)
x + Bd. (5)

Here, the ith component of the state vector x represents the
population of the ith HIV mutant. The matrix A represent
the rate at which replication or mutations occur, i.e., aij
represents the rate at which mutant i turns into mutant j
and aii represents the replication rate of mutant i. The
control input uk is the dose of drug k and the matrices
Dk ∈ D+ specify how efficiently drug k neutralizes each
HIV mutant. The disturbance d represents the effect of noise
and unmodeled dynamics on the system. Let us now consider
the performance output

z :=

[
Q

1
2

0

]
x+

[
0

R
1
2

]
u,

were the matrix Q
1
2 < 0 captures, for example, how deadly

each virus strand is and the matrix R
1
2 < 0 captures, for

example, the cost of different drugs.
Clearly, system (5) is of the form (1). Interestingly, The-

orem 1 implies that the optimal treatment strategy that kills
the virus population and minimizes the effect of worst case
disturbance is to continuously deliver a constant dose of
drugs.
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A. Uncertain model of HIV dynamics
A large challenge with HIV virus dynamics is model

uncertainty. Uncertainty rises from two different aspects:
• It is difficult to estimate the mutation coefficients be-

tween viral strands.
• Once a drug dosage ui is chosen, it is difficult to

precisely deliver the correct amount of drug.
In the HIV example, ∆A represents the uncertainty of

the replication-mutation rates of the virus and the vector δu
represents the uncertainty of the drug dosage. The optimal
robust drug dose is obtained by solving Problem 1 for

ẋ =

(
A+ Ã −

m∑
k= 1

(uk − βk)Dk

)
x + Bd. (6)

Note that when applied to the HIV example, the statement
of Theorem 3 is very intuitive; the worst case perturbation
is the one for which the virus replicates and mutates most
aggressively and the drugs are the least effective.
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