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Leader selection in directed networks

Neil K. Dhingra, Marcello Colombino, and Mihailo R. Jovanovié

Abstract— We study the problem of leader selection in
directed consensus networks. In this problem, certain ‘leader’
nodes in a consensus network are equipped with absolute
information about their state. This corresponds to diagonally
strengthening a dynamical generator given by the negative
of a directed graph Laplacian. We provide a necessary and
sufficient condition for the stabilization of directed consensus
networks via leader selection and form regularized 7> and
Hoo optimal problem leader selection problems. We draw on
recent results that establish the convexity of the 7> and H..
norms for structured decentralized control of positive systems
and identify sparse sets of leaders by imposing an /; penalty
on the vector of leader weights. This allows us to develop a
method that simultaneously assigns leader weights and selects
a limited number of leaders. We use proximal gradient and
subgradient method to solve the optimization problems and
provide examples to illustrate our developments.

I. INTRODUCTION

Consensus networks have attracted much interest for prob-
lems dealing with collective decision-making and collective
sensing [1], [2]. These networks are seen in applications as
diverse as modeling animal group dynamics, formation flying
of spacecraft, and data fusion in sensor networks [3], [4].

The leader selection problem poses the question of how
to equip a network obeying consensus dynamics, which
describes exclusively relative information exchange, with
absolute information at a limited subset of nodes [5]-[15]. In
this paradigm, the nodes within a network are partitioned into
a set of leaders and a set of followers. Both sets of nodes
update their states by averaging their states with those of
their neighbors in the network, but leader nodes also assign
a weight to their own state.

In [9], the authors develop a greedy algorithm for leader
selection in undirected networks and use convex relaxations
to quantify performance bounds. In [8], [11], the authors
derive an explicit expression for the set of optimal leaders
with a fixed weight in undirected networks in terms of graph
theoretic properties. In [13], the authors characterize bounds
on the convergence rate based on the distance between lead-
ers and followers. Most of these results focus on undirected
networks with the exception of [10]. In this work, the authors
derive the optimal leaders for one-dimensional directed path
networks.
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Leader selection amounts to strengthening the dynamical
generator, the negative of a graph Laplacian, with a sparse di-
agonal matrix that specifies the leaders. Since for undirected
networks the graph Laplacian is symmetric, it is well known
that regularized versions of the leader selection problem
are convex [9]. However, since the negative of the graph
Laplacian is Metzler, there is also an interesting connection
to a related class of decentralized control problems for
positive systems [16]-[19]. A recent result on convexity of
structured decentralized control [20] can be used to show
convexity of regularized leader selection problems even for
directed networks.

Our contributions are as follows. First, we provide a
necessary and sufficient condition for closed-loop stability
for sets of leader nodes. Then, we explore several properties
for leader selection in balanced graphs. Finally, we develop
our algorithm and illustrate its utility with examples.

The rest of the paper is organized as follows. In Section II,
we describe the problem formulation and performance met-
rics that we employ. In Section III, we discuss stability of
consensus networks with leaders and properties of balanced
graphs. In Section IV, we develop a proximal algorithm for
leader selection and illustrate its utility in Section V. Finally,
in Section VI we offer concluding remarks.

Notation and basic results

The set R. (Ry,) denotes the nonnegative (positive)
reals. The set of n X n Metzler matrices (matrices with
nonnegative off diagonal elements) is denoted by M". The
set of (nonnegative) integers is denoted by Z(Z,.). Given a
matrix A, AT denotes its transpose. We use 5(A) to indicate
the largest singular value of A, trace(A) to denote its trace,
and [|A||% := trace (AT A) to denote its Frobenius norm.
We write A > 0 (A > 0) if A has nonnegative (positive)
entries and A = 0 (A > 0) to denote that A is symmetric
and positive semidefinite (definite). The vector inner product
is given by (z,y) := 2Ty and the matricial inner product is
given by (X,Y) := trace(XTY). Given a set C we define
the indicator function

Ie(z) == {

We define the sparsity pattern sp (u) of a vector u to be the
set of indices for which w; is nonzero. The ¢; norm of the
vector u is given by, ||u1 = )", |ul.
Finally, we provide some basic definitions and lemmas.
Definition 1 (Weakly connected graph): A graph (V, &) is
weakly connected if there is a path, not necessarily directed,
from every node in V to every other node.

0 ifzeC
+o00 otherwise.
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Definition 2 (Strongly connected graph): A graph (V,€)
is strongly connected if there is a directed path linking from
every node in V to every other node.

Definition 3 (Balanced graph): A graph (V,€) is bal-
anced if the weighted in-degree of each node is the same
as the weighted out-degree.

Lemma 1: Let A € M™. Then e > 0.

Proof: The matrix A € M™ can be written as A — ol
with A > 0 and a > 0. Then e = e “e? > 0 because
ed > 0. |

Lemma 2: Let A € M" be Hurwitz and Q > 0 be a
nonnegative matrix. Then the solution X to the Lyapunov
equation

AX + XAT + Q =0

is elementwise nonnegative.
Proof: This follows directly from Lemma 1 and the
fact that X = [ e4*Qe?" tdt. |
Lemma 3: [21, proposition 1.34] Let A € R™*™ be such
that G(A) has self-edges at each node. Then, the following
statements are equivalent:

e G(A) is strongly connected.
o A1 s positive.

II. PROBLEM FORMULATION

Given a directed network G obeying consensus dynamics,
we consider the problem of selecting an optimal leader or
set of leaders to minimize some performance metric of the
closed-loop system.

A. Consensus dynamics

We consider a directed network G with n nodes governed
by consensus dynamics. Each node ¢ updates its state, x;
by averaging it with the states of other nodes in its set of
neighbors N,

Ll":i = Z wij(acj —l'i) + bZTd7
JjEN;

where w;; > 0 is an edge weight that quantifies the
importance of the link from node j to node ¢, d is a stochastic
disturbance, and b; > 0 describes how d affects the ith node.
The aggregate dynamics can be written as,

z = —Lz + Bd

where L is the weighted directed graph Laplacian [22]
associated with G and B > 0. In this work, we assume that
the network G is weakly connected.

The graph Laplacian has an eigenvalue at 0 corresponding
to a right eigenvector of all ones, i.e., it is row stochastic,
L1 = 0. If this eigenvalue is simple, the nodes x; converge
to a constant vector z1 in the absence of external forcing.
When G is balanced, 7 = %]lTa:(O) is the average of the
initial node values. In general, z = w7’ 2(0) where w is the
left eigenvector of L corresponding to 0, i.e. w’ L = 0.

B. Leader selection

In consensus networks, the dynamics are governed exclu-
sively by relative information exchange between the nodes.
In the leader selection paradigm, certain leader are addition-
ally equipped with absolute information.

An example application is given by a kinematic model
of vehicles where x represents the positions of a formation
of autonomous vehicles. Relative information exchange over
the consensus network corresponds to maintaining constant
distances between neighboring vehicles in the network G.
In this scenario, leader nodes may have access to absolute
information in the form of GPS units.

The dynamics of a node in this network is given by,

Z w,;j(xj 7177;) — klz, + b?d,
JjEN;

T; =

where k; > 0 is the weight that node ¢ places on its absolute
position. If k; > 0, it is a leader and if k; = 0 it is a follower.
The aggregate dynamics can be compactly written as,

t = —(L+ K)x + Bd
z = Cx

where C' > 0, z is a regulated output and K := diag (k).
We evaluate the performance of a leader vector k by the Ho
or Ho, norm of the associated closed-loop system (1) from
the disturbances d to the regulated output z. We note that
system (1) is marginally stable in the absence of leaders and
much work on consensus networks focuses on driving the
deviations from the average node value to zero [23]. Here,
we focus on driving the node values themselves to zero.

The Hy performance of (1) quantifies the variance ampli-
fication from d to z and can be computed by

(1)

Jo(k) = trace(CTX.C) = trace(BX,BT)
0= —(L+KX. - X.(L+K)T" + BBT
0= X, (L+K) - (L+K"X, +CTC

where X, and X, are the controllability and observability
gramians respectively. The H, performance of (1) quantifies
the worst case disturbance amplification from d to z,

Joo(k) = sup &(C(jwl + L+ K) 'B).

For positive systems the supremum over w is achieved at
w = 0 [16], [24], so
Jo(k) = 6(C(L+ K)™'B).

C. Leader selection problems

The problem of adding leaders to a consensus network in-
volves both selecting the optimal set of leaders and designing
the optimal weights for the selected leaders. We introduce
two distinct problems to address these challenges.

Problem 1: Given a network G with a set V of n vertices,
a number of leaders N € Z; < n and a leader weight &,
find the optimal set V, C V of N leaders that solves
J(k)

subject to k = Z Ke;
i€V

minimize
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Fig. 1: A directed network and the sparsity pattern of the

corresponding graph Laplacian. This network is stabilized if
and only if either node 1 or node 2 are made leaders.
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L

where J is one of the performance metrics described in
section II-B.

Problem 1 is a combinatorial problem which assumes a
fixed leader weight «. By introducing a regularized version of
the leader selection problem, we jointly tackle the problems
of selecting leaders and designing their weights.

Problem 2: Given a network G, a quadratic leader penalty
R > 0 and an /; penalty parameter y, design a vector of
leader weights k to solve,

minimize J(k) + v|/k|1 + kT Rk

where J is a performance metric, and || k|1 = Y |kil.

The matrix R > 0 imposes a quadratic penalty on the
leader weights and thereby limits their magnitude. The ¢,
norm is a commonly used proxy for the cardinality function
and the associated parameter, vy, specifies the importance on
sparsity. We note that Problem 2 can be augmented with
arbitrary convex regularizers, such as a budget constraints or
box constraints on the leader weights.

It follows from recent results that Problem 2 is a convex
problem [20] in the leader vector k. Although decentralized
control of positive systems can be solved with convex
programming, standard methods [16], [17], require a change
of variables that does not us to impose arbitrary convex
regularization on k for the purpose of leader selection.

III. LEADER SELECTION IN DIRECTED NETWORKS

A. Stability

For a vector of leader weights k to be feasible for Prob-
lems 1 or 2, it must stabilize system (1); i.e., —(L+ K) must
be Hurwitz. In a connected undirected consensus network,
any k > 0 with at least one nonzero entry is stabilizing.

This is not the case for directed networks. In Fig. 1,
making node 1 or 2 a leader will stabilize the network
but making nodes 3 or 4 a leader will not. Our first result
is a condition for the stabilization of a directed consensus
network by a set of leaders. This will allow us to impose
closed-loop stability as an linear constraint on k. First, we
restate a well-known result from matrix theory.

Theorem 4: Let A € C™*" have entries a;;. Let D(c, R)
be the closed disc centered at ¢ with radius R. Every
eigenvalue of A lies within at least one of the Gershgorin

discs,
D(ai, Z |ai;1)-
i#]
Proof: See [25]. |
Theorem 5: Let L be a weighted directed graph Laplacian
and let K = diag(k). The system,

i = —(L+ K)z

is stable if and only if w ok # 0 for all nonzero w such that
wT L = 0 where o is the elementwise (Hadamard) product.
Proof: (<) Ifwok =0, wTK = 0. If in addition,
wl'L =0,
wl(L+ K) =0,

and therefore 0 is an eigenvalue of —(L + K).

(=) Since the graph Laplacian L is row stochastic and
K is diagonal and nonnegative, by the Gershgorin circle
theorem 4, the eigenvalues of —(L + K) are at most 0.
Therefore, to show that —(L + K) is Hurwitz, it suffices
to show that it has no eigenvalue at 0. We show this by
contradiction. Assume there exists a nonzero w such that

—wl(L + K) = 0.

This implies that either w’ L = w’K = 0orthatw?’L =
—wT K. The first case is not possible because w’ K # 0 for
any w such that w?' L = 0 since w o k # 0 by assumption.

If the second case is true, then w? Lv = —w?® Kv must also
hold for all v. However, if we take v = 1, then wT L1 = 0
but —w” K1 is nonzero. This completes the proof. [ ]

Remark 1: Only the set of leader nodes is relevant to the
question of stability. If k£ does not stabilize (1), no ak with
a > 0 will. Similarly if k stabilizes (1), every ak will.

Intuitively, this condition requires that there is a path from
the set of leader nodes to every node in the network.

Corollary 6: If G is strongly connected, any choice of
leader node will stabilize (1).

Proof: The graph Laplacian associated with a strongly
connected graph is irreducible. By the Perron-Frobenius
theorem for irreducible matrices [25], the left eigenvector
associated with —L is positive. As such, w o k # 0 for any
nonzero k and therefore the system is stable by Theorem 5.

|

B. Balanced graphs

Proposition 7: Let G be a balanced graph with graph
Laplacian L, let G be the same graph with all edges reversed,
and let B = CT. Then, the #, and H., norms associated
with a given set of leader weights k are the same for both
G and Q

Proof: Since G is balanced, the graph Laplacian asso-
ciated with Q L =L7. Since B = CT, the controllability
gramian of (1) associated with G is the observability gramian
of (1) associated with Q . Equivalence of the H2 norm follows
from its expression. Equivalence of the H., norm follows
from invariance of the singular values under transposition,
ie, o(C(L+K)™'B)=0o(BT(LT + K)~tCT) ]

The space of balanced graphs is spanned by cycles.
Interestingly therefore, the optimal set of leaders is invariant
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under reversal of all cycles. In [26], the authors explored
how cycles affect undirected consensus networks. This result
suggests that cycles also play a fundamental role in the
performance of directed consensus networks.

Proposition 8: Let G be a balanced graph with graph
Laplacian L and let B = C' = I. Let G represent the
graph corresponding to L := 1(L+L"). Then, Hs or Hoo
performance of any leader vector k£ with G is an upper bound
on the performance of k with G.

Proof: Since G is balanced, Lis a graph Lapla-
cian which corresponds to the symmetric component of
L. By [27] and [28], the Ho performance and the H.,
performance corresponding to the symmetric component of
a dynamical system is an upper bound on the performance
of original system. [ ]

This property is convenient since, by [8], [11], optimal
sets of 1 or 2 leaders in undirected consensus networks
can be determined explicitly from graph theoretic properties.
In other words, the explicit solution to Problem 1 for an
undirected network, given by [8], [11], provides an upper
bound on Problem 1 for a balanced network.

IV. METHODS FOR LEADER SELECTION

In this section we develop methods for solving the leader
selection problem 2. Problem 2 is convex for the performance
metrics J [20] introduced in section II-B.

A. Regularized problem

Problem 2 can be used to simultaneously find the optimal
leaders and design leader weights. We propose Algorithm 1
to select IV leaders. Even though J; and J, are convex, it is
not clear if they admit formulations which are amenable to
standard solvers. Since ||k||; is not differentiable, we employ
a proximal gradient descent method to obtain a solution.

Algorithm 1: Leader selection algorithm

Sety>0, N<neN, R>0;
Identify topology
while card (k) > N do
k. = argmin, J(k)+ kT Rk + k|1 ;
increase 7;

end
Design optimal edge weights

u* = argmin J(k) + kT Rk )

subject to sp (k) C sp(ky). ’

Proximal (sub)gradient descent: Proximal (sub)gradient
descent provides a generalization of standard gradient de-
scent which can be applied to nonsmooth optimization prob-
lems [29].

Y = Soy (K — a(VJI(K) + 2RE))

where S, is the soft-thresholding operator,

0 vl < p
Swi)) = vi—p v>up
v+ v < —p

We employ standard backtracking and termination crite-
ria [30] for proximal gradient methods. When J is nons-
mooth, as is the case for H ., control of certain networks, we
use proximal subgradient methods to obtain a solution [31].

B. Gradients of the performance metrics

1) Ho norm:
Proposition 9: Let —(L + K) be Hurwitz and let K =
diag(k). Then,

VJ2(k) = 2diag(Xch) (2)

where X, and X, are the controllability and observability
Gramians of the closed-loop system (1),

—~(L+K)X. — X(L+K)' + BB = 0
—(L+K)'X, - X,(L+K) + CTC = o.
Proof: See [20]. |

Remark 2: Lemma 2 implies that X, and X, are nonneg-
ative. Therefore, the diagonal of X X, is positive and, since
the gradient is a weighted sum these diagonal elements, .J5
is a monotone function of k. This implies that increasing the
leader weight of any leader always decreases .Js.

Remark 3: The matrix X.X, appears often in model
reduction. The gradient with respect to k; corresponds to
the inner product between the ith columns of X, and X,.

2) Hoo norm:

Proposition 10: Let A, := —(L+ K) be Hurwitz and let
K = diag(k). Then,

0Jx(d) = { Z a; diag (Ac_llviwerc_ll)

(3)
| wl A= v = Jo(u), o € 79}.
where P = {a;|a; >0, Zai =1}
Proof: See [20]. ' -

Proposition 11: 1f G is strongly connected, J, is a con-
tinuously differentiable function of k.
Proof: See [20]. |
Remark 4: The gradient at node ¢ is given by,

Vo, Joo(u) = (eZTAC_llv)(wTA;lei).

Since —A&l, w, and v are nonnegative, the gradient is always
nonnegative so .J, is a monotone function of k.

Remark 5: The quantity e/ A=1v is a measure of how
much node 1 is affected by the input forcing which causes the
largest overall response of system (1). In contrast, w? A~ le;
measures how much forcing at node ¢ affects the direction
of the largest output response.

V. NUMERICAL EXAMPLES

Here, we perform simultaneous leader selection and leader
weight design for two simple directed networks and a real
world network.
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A. Synthetic examples

Consider the directed graph with unit edge weights whose
topology is shown in Figure 2. We choose the input matrix
as B = diag(1,1,1,1,5,1) to make node 5 most affected
by the disturbance. The output matrix is C' = [ and the
quadratic control penalty is given by R = I. For the Ho
and H., performance metrics, we employ Algorithm 1 to
identify a single leader. Since the H., performance index
is concerned with the worst case disturbance amplification,
it identifies node 5 as the most important. In contrast, the
‘Ho performance index measures average performance and
identifies node 3 as the best single leader.

(a) H2-optimal leader (b) Hoo-optimal leader

Fig. 2: Ha vs. Hoo leader selection.

We next consider the directed network in Figure 3 with
unit edge weights and employ Algorithm 1 for Hy optimal
leader selection. As +y is increased, fewer leaders are selected.
Note that although node 7 has the largest out-degree, it is not
identified as one of the three most important leaders. Table I
shows the optimal leader weights for different /V.

O O
o o3

(a) (
c)

©,
O,

o
o

O,

O
O OO
Fe e

Fig. 3: Hy leader selection for N = 6, 3,2, 1 corresponding
to v =0.65,1.97,3.43,125.9

v T

%
f
By B
f

B. College Football Ranking

Leader selection has also been used as a proxy for iden-
tifying important nodes in a network. Inspired by the recent
use of graph theoretic tools for ranking athletic teams and to
illustrate the utility of our algorithm on real data, we consider
the problem of ranking college football teams.

Due to the number of teams in the top division of college
football (128) and the relative scarcity of games between

N=6 N=3 N=2 N=1
0.385 0 0 0
0.361 0 0 0
0.606 0.693 0 0

0 0 0 0

0 0 0 0
0.676 0.832 0.950 1.364
0.451 0 0 0
0.650 0.787 0.898 0

TABLE I: Optimal leader weights

them (around 13 per team), ranking these teams is an
underdetermined problem. The current practice of ranking
by a committee is clearly subject to bias. Recently, graph
theoretic measures, such as average path length from each
node, have been explored for the purpose of objectively
ranking teams or athletes [32], [33].

We used the scores of college football games from the
2015 — 2016 season collected from [34] to generate a
network. If team A beat team B, a edge was placed from
A to B with a weight equal to the score difference in the
game. There were 203 teams (nodes) and 863 games (edges)
in our data set. We use Algorithm 1 to select the top IV
teams by identifying N Ho optimal leaders. Interestingly, the
metrics we use are biased against selecting leaders which are
close in the network. In this context, such proximity would
correspond to teams who have many common opponents.

Fig. 4 shows the network generated. The large connected
component in the center represents the teams in the top
division. Since our dataset included games played between
teams from the top division and lower divisions but not from
games played between teams of the lower divisions, there are
a number of topgoraphically isolated nodes.

Table II shows sets of 2, 4, 6, and 8 leaders with the
corresponding end-of-season rankings from the Associated
Press (AP) [35]. Our algorithm selected teams which agree
well with the AP rankings with the notable exception of
Southern Illinois. This team played only one game in the
our set — a close loss to a poorly ranked team. We ascribe
this anomaly to the the topological isolation of this team.

¥ 0.225 0.6 1 10
Teams 8 6 4 2
AP #1 Alabama Alabama Alabama Alabama
AP #4 | Ohio State  Ohio State  Ohio State  Ohio State
AP #2 Clemson Clemson Clemson
AP #8 Houston Houston Houston
AP #3 Stanford Stanford
AP NR S. Illinois S. Illinois
AP #12 Michigan
AP #10 | Mississippi

TABLE II: Leaders selected for different values of .

VI. CONCLUDING REMARKS

We study the leader selection problem for directed consen-
sus networks and provide a necessary and sufficient condition
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Fig. 4: Network of games in the 2015—2016 College Football
season. The central connected component corresponds to the
top division, and the distal nodes are lower division teams
for whom there are less data.

for stability of the system with a given set of leaders. We
explore the properties of balanced graphs with regards to
leader selection. Using recent results on the convexity of
positive systems, we develop an algorithm for simultaneously
selecting leaders and designing their edge weights. Finally,
we illustrate the utility of our algorithm on two synthetic
examples and one real-world application.
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