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Abstract— We study a class of structured optimal control
problems for positive systems in which the design variable
modifies the main diagonal of the dynamic matrix. For this
class of systems, we establish convexity of both the H2 and
H∞ optimal control formulations. In contrast to previous
approaches, our formulation allows for arbitrary convex con-
straints and regularization of the design parameter. We provide
expressions for the gradient and subgradient of the H2 and H∞
norms and establish graph-theoretic conditions under which the
H∞ norm is continuously differentiable. Finally, we develop a
customized proximal algorithm for computing the solution to
the regularized optimal control problems and apply our results
for HIV combination drug therapy design.

I. INTRODUCTION

Even when standard optimal control problems admit con-
vex formulations, the introduction of structural constraints
or regularizers often makes the problem intractable. Con-
sequently, significant effort has been devoted to identifying
classes of convex problems. These include funnel causal and
quadratically invariant systems [1], [2], positive systems [3],
structured and sparse consensus and synchronization net-
works [4]–[6], optimal sensor/actuator selection [7], [8], and
symmetric modifications to symmetric linear systems [9].

Positive systems have received much attention in recent
years because of convenient properties that arise from their
structure. A system is called positive if, for every non-
negative initial condition and input signal, its state and
output remain nonnegative [10]. Such systems appear in the
models of heat transfer, chemical networks, and probabilistic
networks. In [11], the authors show that the KYP lemma
greatly simplifies for positive systems, thereby allowing for
decentralized H∞ synthesis via Semidefinite Programming
(SDP). In [3], it is shown that static output-feedback can be
solved via Linear Programming (LP) for a class of positive
systems. In [12], [13], the authors develop necessary and
sufficient conditions for robust stability of positive systems
with respect to induced L1–L∞ norm-bounded perturbations.
In [14], [15], it is shown that the structured singular value is
equal to its convex upper bound for positive systems. Thus,
assessing robust stability with respect to induced L2 norm-
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bounded perturbation is also tractable.

Most of the recent literature focuses on control design for
positive systems with respect to induced L1–L∞ norms or
induced L2 norms [11], [13], [16]. In this paper, we show
that a class of H2 control problems, which is not tractable
for general systems, is convex for positive systems. We also
show that the H∞ performance metric is convex in the
original controller variables. This (i) allows us to formulate
convex optimization problems where the control parameter
is kept as an optimization variable; and (ii) facilitates a
straightforward implementation of constraints or regularizers
on the control parameter in the optimal control formulation.

The paper is organized as follows. In Section II, we
formulate the regularized optimal control problem for a class
positive systems. In Section III, we establish convexity of
both H2 and H∞ optimal control formulations. In Sec-
tion IV, we provide an example from combination drug
therapy design. Finally, in Section V, we conclude the paper
and summarize the ongoing research directions.

Notation

The set of real numbers is denoted by R. R+ (R++)
denote the set of nonnegative (positive) reals. The set of n×n
Metzler matrices (matrices with nonnegative off diagonal
elements) is denoted by Mn. The set of n × n nonnegative
(positive) diagonal matrices is denoted by Dn+ (Dn++). Given
a matrix A, AT denotes its transpose. We use σ̄(A) to
indicate the largest singular value of A, trace(A) to denote
its trace, and ‖A‖2F := trace

(
ATA

)
to denote its Frobenius

norm. We write A ≥ 0 (A > 0) if A has nonnegative
(positive) entries and A < 0 (A � 0) to denote that A
is symmetric and positive semidefinite (definite). The vector
inner product is given by 〈x, y〉 := xT y and the matricial
inner product is given by 〈X,Y 〉 := trace(XTY ). Given a
set C we define the indicator function

IC(x) :=

{
0 if x ∈ C
+∞ otherwise.

We define the sparsity pattern sp (u) of a vector u to be the
set of indices for which ui is nonzero. Finally, the `1 norm
of the vector u is given by, ‖u‖1 :=

∑
i |ui|.

II. PROBLEM FORMULATION

A. Background material

We begin with a definition of a linear positive system.
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Definition 1: A linear system described by the state-space
representation,

ẋ = Ax + Bd

y = Cx + Dd,

is positive if and only if A is Metzler and B, C, and D are
nonnegative matrices.

We also recall several useful results related to positive
systems that are easily derived.

Lemma 1: Let A ∈Mn. Then eA ≥ 0.

Proof: The Metzler matrix A can be written as Ã−αI
with Ã ≥ 0 and α > 0. Then eA = e−αeÃ ≥ 0 because
eÃ ≥ 0.

Lemma 2: Let A ∈ Mn be Hurwitz and Q � 0 be a
nonnegative matrix. Then the solution X to the Lyapunov
equation

AX + XAT + Q = 0

is elementwise nonnegative.

Proof: This follows directly from Lemma 1 and the
fact that X =

∫∞
0

eAtQeA
T tdt.

Lemma 3: Let A ∈ Rn×n+ . Then the left and right singular
vectors, w and v, associated with the largest singular value of
A are nonnegative. If A ∈ Rn×n++ , then w and v are positive
and unique.

Proof: This follows from the application of the Perron
theorem [17, Theorem 8.2.11] to AAT and ATA.

B. H2 and H∞ optimal control problems

We consider a class of positive systems,

ẋ = (A+K(u))x + Bd

z = Cx
(1)

where A is a Metzler matrix, B and C are positive matrices,
K: Rm → Dn is a linear function of the control parameter
u ∈ Rm, x(t) ∈ Rn is the state vector, z(t) ∈ Rq is the
performance output, and d(t) ∈ Rp is the disturbance input.

Our objective is to design a stabilizing diagonal matrix
K(u) that minimizes a measure of the amplification from d
to z. In the case of white stochastic disturbances, we consider
the steady-state variance of the output z,

J2(u) := lim
t→∞

E
(
zT (t) z(t)

)
where E is the expectation operator. This performance metric
quantifies the H2 norm of system (1). Another measure of
the input-output amplification is the H∞ norm of the closed-
loop system is given by,

J∞(u) := sup
ω ∈R

σ̄
(
C (jωI −A−K(u))−1B

)
where σ̄(·) is the largest singular value of a given matrix.
Minimization of J2 or J∞ over u may be ill-posed because
there is no penalty on the control effort in the performance

output z. Thus, both J2 and J∞ might have infimums which
are not attainable by a finite u.

To penalize the control effort and impose additional struc-
tural requirements on u, we consider a class of regularized
optimal control problems

minimize
u

J(u) + g(u)

subject to A + K(u) Hurwitz.
(2)

Although the regularization term g(u) can be any convex
function of u, we restrict our attention to the following
regularizers

g1(u) = uTRu

g2(u) = γ ‖u‖1
g3(u) = IC(u),

(3)

with R � 0 and γ > 0. The quadratic penalty limits the
magnitude of u, the `1 norm promotes sparsity of u, and the
indicator function enforces that u belongs to a convex set C.
We refer the reader to [7], [18], [19] for information about
some recent uses of regularization in the optimal control
problems.

It is well known that the maximum eigenvalue of A+K(u)
is a convex function of u [20]. Recently, it has been shown
that the weighted L1 norm of the response of system (1) at
time T from a nonnegative initial condition x0 ≥ 0,∫ T

0

cTx(t) dt

is a convex function of u for every nonnegative vector c ∈
Rm [16], [21]. Furthermore, decentralized H∞ control of
positive systems can be cast as a semidefinite program (SDP)
using a suitable change of coordinates [11]. Recent work
has provided a characterization of this problem via a linear
program (LP) [22]. However, since both the SDP and the
LP formulations require a change of variables that does not
preserve the structure of K(u), it is difficult to explicitly
impose structural constraints or penalties on u.

In this paper, we show that both theH2 and theH∞ norms
are convex functions of the original optimization variable u
and provide explicit expressions for the (sub)gradients. This
allows us to develop efficient descent algorithms that solve
regularized optimal control problems of the form (2).

C. Applications

The class of systems that we consider is encountered in
a variety of applications ranging from network theory to the
control of biological systems.

1) Combination drug therapy design for HIV treatment:
As shown in [23], [24], the problem of designing drug
dosages for treating HIV can be expressed as

ẋ =

(
−L + diag (p) −

m∑
k=1

ukDk

)
x + d.

Here, the ith component of the state vector x represents
the population of the ith HIV mutant. The diagonal matrix
diag (p) specifies the replication rate of each mutant, and
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L is a directed graph Laplacian which quantifies the rate
of mutation from one mutant to another. The control input
uk is the dose of drug k and Dk is a given diagonal
matrix which specifies how efficiently drug k kills each HIV
mutant. Imposing constraints on drug dosages is challenging
using existing positive systems tools for H2 and H∞ design
because the drugs u do not appear explicitly as optimization
variables [21], [24], [25], making regularization difficult.

2) Leader selection in directed networks: We consider
directed networks with n nodes. Each node xi updates its
state by averaging with its set of neighbors Ni,

ẋi =
∑
j ∈Ni

wij(xj − xi) + di,

where wij is the weight of the edge from j to i, and di
is a disturbance affecting node i. In contrast to this relative
information exchange, some nodes – ‘leaders’ – are equipped
with absolute information about their state,

ẋi =
∑
j ∈Ni

wij(xj − xi) − ui(xi − ri),

where ui is a control gain and ri a reference signal. The
aggregate dynamics can be compactly written as,

ẋ = − (L+K(u))x + d

where L is a graph Laplacian [26] that reflects the network
structure and K(u) = diag (u) is a diagonal matrix whose
nonzero entries identify the leaders.

One application arises in vehicular formations where the
‘leaders’ are equipped with absolute measurements such as
GPS data and the regular nodes can only measure their
distances from neighboring vehicles. Another application is
seen in opinion dynamics in social networks where it is
desired to identify the ‘leaders’ for targeted advertising.

III. OPTIMAL CONTROL

In this section we develop the main technical results of the
paper. We show that the H2 and H∞ norms of the positive
system (1) are convex in the decision variable u. We also
provide explicit characterizations of the gradient of J2 and
the subgradient set of J∞ and present a condition for J∞ to
be continuously differentiable over u.

A. H2 optimal control

We begin with the convexity result for the H2 norm.
Proposition 4: Let A be Metzler, B and C be positive

matrices, and K(u) be a diagonal matrix that depends
linearly on u. Then, the square of the H2 norm of the closed-
loop system (1) is a convex function of u.

Proof: The square of the H2 norm is given by,

J2(u) =
〈
CTC,Xc

〉
:= trace (CTC Xc)

where Xc is the controllability Gramian of the closed-loop
system determined by the solution to the Lyapunov equation

(A + K(u))Xc + Xc(A + K(u))T + BBT = 0.

For Hurwitz A+K(u), Xc can be expressed as,

Xc =

∫ ∞
0

e(A+K(u))tBBT e(A+K(u))T t dt.

Substituting this expression into the trace and rearranging
terms yields,

J2(u) =

∫ ∞
0

‖C e(A+K(u))tB‖2F dt

=

∫ ∞
0

∑
i, j

(
cTi e(A+K(u))t bj

)2
dt

where cTi is the ith row of C and bj is the jth column of
B. From [16, Lemma 3] we know that

cT e(A+K(u))t b

is a convex function of u when c and b are nonnegative. Since
the range of this function is R+ and (·)2 is nondecreasing
over R+, the composition rules for convex functions [27]
imply that the expression (cTi e(A+K(u))tbj)

2 is convex. Fi-
nally, convexity of J2 follows from the linearity of the sum
and integral operators.

Remark 1: Using [16, Lemma 4], convexity of the
quadratic cost ∫ T

0

xT (t)CTC x(t) dt

also holds over a finite or infinite time horizon for a piece-
wise constant u. Even though this allows for the design of
time-varying controllers using model predictive control, in
this paper we restrict our attention to a constant u.

Before we provide an explicit characterization for ∇J2,
we recall the definition of the adjoint of a linear operator.

Definition 2: The adjoint of a linear operator K: Rm →
Rn×n is the linear operator K†: Rn×n → Rm which satisfies

〈X,K(u)〉 =
〈
K†(X), u

〉
.

Proposition 5: Let A+K(u) be Hurwitz and let K be a
linear operator. Then the gradient of J2 is given by,

∇uJ2(u) = 2K†(XcXo) (4)

where Xc and Xo are the controllability and observability
Gramians of the closed-loop system (1),

(A+K(u))Xc + Xc(A+K(u))T + BBT = 0

(A+K(u))TXo + Xo(A+K(u)) + CTC = 0.

Proof: The Lagrangian associated with J2 is

L(u,Xc, Xo) =
〈
CTC,Xc

〉
+〈

Xo, (A+K(u))Xc +Xc(A + K(u))T +BBT
〉

Variation with respect to Xc and Xo yields

∇XoL = (A + K(u))Xc + Xc(A + K(u))T + BBT

∇Xc
L = (A + K(u))TXo + Xo(A + K(u)) + CTC.
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By rewritting L as

L(u,Xc, Xo) = 2
〈
K†(XcXo), u

〉
+
〈
CTC,Xc

〉
+〈

Xo, AXc + XcA
T + BBT

〉
it follows that the gradient of L with respect to u is,

∇uL = 2K†(XcXo) (5)

where the controllability and observability Gramians of the
closed-loop system solve the stationarity conditions∇Xo

L =
0 and ∇Xc

L = 0, respectively.
Remark 2: The expression for the gradient provided in

Proposition 5 applies to any linear system that can be
stabilized with a linear function K(u). However, when the
system is not positive and K is not linear, the convexity of
J2(u) is not guaranteed.

Remark 3: When K(u) :=
∑
i uiKi with Ki ∈ Dn, each

component of the gradient can be expressed as

∇ui
J2 = 2 〈XcXo,Ki〉 .

Since K is a diagonal operator, each element of the gradient
is a weighted sum of the diagonal elements of the matrix
XcXo. Lemma 2 implies that, for a positive system, the
Gramians Xc and Xo are nonnegative matrices. Thus, the
diagonal of XcXo is positive and J2 is a monotone function
of its diagonal elements.

B. H∞ optimal control

We first briefly summarize the standard H∞ optimal
control formulation for positive systems applied to (1). The
KYP lemma for positive systems [11] states that J∞(u) ≤ γ
if and only if there exist P ∈ Dn++ such that,[
CTC + (A+K(u))TP + P (A+K(u)) PB

BTP −γ2
]
≺ 0.

The change of variables K(u)P = Y ∈ Dn yields,[
CTC +AP + Y + PA+ Y PB

BTP −γ2
]
≺ 0.

from which K(u) can be recovered as K(u) = Y P−1. Using
the results in [22, Theorem 1], this LMI can be cast as an LP.
However, the change of variables used in both the LMI and
the LP does not allow us to penalize or constrain u directly.
This is because regularizers g(u) given by (3) are different
from the standard quadratic penalty on the control effort.

The sparsity pattern of the diagonal matrix K(u) is the
same as the sparsity pattern of the diagonal matrix Y . Thus,
promoting the sparsity of Y is equivalent to promoting the
sparsity of K(u). In particular, sparsity in u can be readily
enforced in a special case when K(u) = diag(u). However,
in general u is a bilinear function of P−1 and Y and it is
much more challenging to promote sparsity of u for K(u) :=∑
k ukDk with diagonal Dk using the above formulation. It

is therefore desirable to provide a convex characterization
for the H∞ problem in the original set of coordinates.

Proposition 6: Let A be Metzler, B and C be positive ma-
trices, and K(u) be a diagonal matrix that depends linearly
on u. Then, the H∞ norm of the closed-loop system (1) is
a convex function of u.

Proof: The H∞ norm is defined as

J∞(u) = sup
ω

σ̄
(
C (jωI − (A+K(u)))

−1
B
)
.

For positive systems, the supremum is achieved at ω =
0 [11]. Since A+K(u) is Hurwitz,

−(A + K(u))−1 =

∫ ∞
0

e(A+K(u))t dt (6)

and therefore,

J∞ = σ̄

(
C

∫ ∞
0

e(A+K(u))tdtB

)
.

Using [16, Lemma 3], we conclude that each element in the
argument of σ̄ is a nonnegative convex function of u.

The maximum singular value σ̄(X) can be expressed as a
convex function of the entries of X [27],

σ̄(X) = max
‖w‖=1,‖v‖=1

wTXv. (7)

When X is a nonnegative matrix, v and w are nonnegative
by Lemma 3. Since

wT (X + α eie
T
j )v ≥ wTXv

for any nonnegative α, σ̄(X) is nondecreasing in each
element of X . Thus, the composition rules for convex
functions [27] imply that J∞ is a convex function of u.

Proposition 7: Let K be a linear operator and Acl :=
A+K(u) be Hurwitz. Then,

∂J∞(u) =
{∑

i

αiK
† (A−1cl BviwTi CA−1cl )

| − wTi (CA−1B)vi = J∞(u), αi ∈ P
}

(8)
where K†(u) is the adjoint of K(u) and P is defined by

P :=

α | αj ≥ 0,
∑
j

αj = 1

 .

Proof: The largest singular value of the matrix X is
determined by (7). The subdifferential set of the supremum
over a set of differentiable functions,

f(x) = sup
i∈I

fi(x)

is the convex hull of the subgradients of each function that
achieves the maximum [28, Theorem 1.13],

∂f(x) =
∑

j|fj(x)=f(x)

αj∇fj(x)

where α ∈ P . Therefore, the subgradient of σ̄ is given by

∂σ̄(X) =

∑
j

αjwjv
T
j | wTj Xvj = σ̄(X), α ∈ P

 .
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The matricial derivative of X−1 and the application of the
chain rule yield (8).

Remark 4: The expression for the gradient provided in
Proposition 7 applies to any linear system that can be
stabilized with a linear function K(u). However, when the
system is not positive and K is not diagonal, the convexity
of J∞(u) is not guaranteed.

It is well known that, in general, the H∞ norm is not
differentiable. We next provide graph theoretic conditions
for J∞ to be continuously differentiable.

Definition 3 (Graph associated to a matrix): Given A ∈
Rn×n we denote the graph associated to A as G(A) = (V, E),
with the set of vertices V = {1, ..., n} and the set of edges
E := {(i, j) |Aji 6= 0 }.

Definition 4 (Strongly connected graph): A graph (V, E)
is strongly connected if there is a directed path linking every
two distinct nodes in V .

Lemma 8: [29, Proposition 1.34] Let A ∈ Rn×n be
such that G(A) has self-edges at each node. The following
statements are equivalent:
• G(A) is strongly connected.
• An−1 is positive.
Proposition 9: Let A be Metzler, B and C be nonnegative

matrices, and K(u) be a diagonal linear operator such that
Acl := A + K(u) is Hurwitz. If the graph associated with
A is strongly connected, J∞ is a continuously differentiable
function of u.

Proof: Since A is Metzler, we can always find an α > 0
sufficiently large so that Acl = Ã−αI with Ã nonnegative
and Ãii > 0 for every i ∈ {1, ...n}. The edge set of G(Ã)
contains all edges of G(A) plus all self-edges. Since self-
edges play no role in strong connectivity, if G(A) is strongly
connected so is G(Ã). From Lemma 8 we conclude that
Ãn−1 > 0 and from the definition of the matrix exponential
we have

eAcl = e−αeÃ = e−α
∞∑
k=0

Ãk

k!
> 0 (9)

From (6) and (9), we conclude that if the graph associ-
ated with A is strongly connected, −A−1cl , and therefore
−CA−1cl B are positive matrices. By Lemma 3, w and v are
positive and unique. This implies that (8) is unique for each
stabilizing u and, thus, J∞ is continuously differentiable.

IV. EXAMPLE

Consider the HIV combination drug therapy problem
described in Section II-C.1. Following [25], [30], [31], we
study a system with 35 mutants (x) and 5 drugs (u). The
sparsity pattern of the A matrix, shown in Fig. 1, corresponds
to the mutation pattern and replication rates of the HIV
mutants and K(u) specifies the effect of drug therapy.

Several clinically relevant properties, such as maximum
dose or budget constraints, may be directly enforced in this
formulation. Other conditions can be promoted via convex
penalties, such as drug j requiring drug i via ui ≥ uj or

(a) HIV mutation network (b) Sparsity pattern of A

Fig. 1: Mutation pattern in the HIV model.

Fig. 2: Percent H2 and H∞ performance degradation as a
function of the number of drugs N .

mutual exclusivity of drugs i and j via ui + uj ≤ 1. We
design H2 and H∞-optimal drug doses using two types of
convex regularizer g.

A. Budget constraint

We first impose a unit budget constraint on the drug doses
and solve the H2 and H∞-optimal problems,

minimize J(u)

subject to
∑
i

ui = 1, ui ≥ 0.

using proximal gradient and proximal subgradient meth-
ods [32], [33]. Table I contains the optimal doses and
illustrates the tradeoff between H2 and H∞ performance.

Antibody uH2 uH∞
3BC176 0.5952 0.9875

PG16 0 0
45-46G54W 0.2484 0.0125

PGT128 0.1564 0
10-1074 0 0

J2(uH2
) 0.6017

J2(uH∞ ) 1.1947

J∞(uH2 ) 0.1857
J∞(uH∞ ) 0.1084

TABLE I: Optimal budgeted doses and H2/H∞ norms.

B. Sparsity-promoting framework

Although the budget constraint above is naturally sparsity-
promoting, we introduce an algorithm to select sparser sets
of drugs for a quadratically regularized problem. In Algo-
rithm 1, we use a reweighted `1 penalty function [34] to
select a few drugs and then perform a ‘polishing’ step to
design the optimal doses of those drugs. Fig. 2 shows the
percent performance degradation relative to the optimal dose
using all 5 drugs with B = C = I , R = I and γ varying
from 0.01 to 10 in 50 logarithmically spaced increments.
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Algorithm 1: Sparsity-promoting algorithm for N drugs

Set γ > 0, R � 0, w = 1, ε > 0 ;
while card (uγ) > N do

uγ = argmin
u

J(u) + uTRu +
∑
wi|ui|

increase γ, wi = (ui + ε)−1;
end
u? = argmin J(u) + uTRu

subject to sp (u) ⊆ sp (uγ).

V. CONCLUDING REMARKS

In this paper, we establish convexity of the closed loop
H2 and H∞ norms for a class of structured optimal con-
trol design problems for positive systems. We provide the
(sub)gradients of these performance measures and give graph
theoretic conditions for the H∞ norm to be continuously
differentiable. Our formulation is amenable to arbitrary con-
vex constraints and regularizers and can be used to address
challenges in several applications, including leader selection
in directed networks and ombination drug therapy.

Our ongoing work focuses on extending these results to
other classes of linear operators and time-varying control
inputs. We also plan to study the leader selection and
combination drug therapy problems in more detail.
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