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Structured Decentralized Control of Positive
Systems With Applications to Combination

Drug Therapy and Leader Selection
in Directed Networks

Neil K. Dhingra , Marcello Colombino , and Mihailo R. Jovanović , Senior Member, IEEE

Abstract—We study a class of structured optimal control
problems in which the main diagonal of the dynamic matrix
is a linear function of the design variable. While such prob-
lems are in general challenging and nonconvex, for positive
systems we prove convexity of the H2 and H∞ optimal
control formulations that allow for arbitrary convex con-
straints and regularization of the control input. Moreover, we
establish differentiability of the H∞ norm when the graph
associated with the dynamical generator is weakly con-
nected and develop a customized algorithm for computing
the optimal solution even in the absence of differentiability.
We apply our results to the problems of leader selection in
directed consensus networks and combination drug ther-
apy for human immunodeficiency virus (HIV) treatment. In
the context of leader selection, we address the combinato-
rial challenge by deriving upper and lower bounds on opti-
mal performance. For combination drug therapy, we develop
a customized subgradient method for efficient treatment of
diseases whose mutation patterns are not connected.

Index Terms—Convex functions, decentralized control,
H infinity control, network theory (graphs), optimization
methods.

I. INTRODUCTION

MODERN applications require structured controllers that
cannot be designed using traditional approaches. Ex-

cept in special cases, e.g., in funnel causal and quadratically
invariant systems [1], [2] and in system level synthesis [3],
in which spatial and temporal sparsity constraints are imposed
on the closed-loop response, posing optimal control problems
in coordinates that preserve controller structure compromises
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convexity of the performance metric. In this paper, we study
the structured decentralized control of positive systems. While
structured decentralized control is challenging in general, we
show that, for positive systems, the convexity of the H2 and
H∞ optimal control formulations is not lost by imposing struc-
tural constraints. We also derive a graph theoretic condition that
guarantees continuous differentiability of the H∞ performance
metric and develop techniques to address combination drug ther-
apy design and leader selection in directed consensus networks.

Positive systems arise in the modeling of systems with
inherently nonnegative variables (e.g., probabilities, concentra-
tions, and densities). Such systems have nonnegative states and
outputs for nonnegative initial conditions and inputs [4]. In this
paper, we examine models of HIV mutation [5]–[10] and con-
sensus networks [11]–[16], where positivity comes from non-
negativity of populations and the structure of the underlying
dynamics, respectively. Decentralized control, in which only
the diagonal of the dynamical generator may be modified, is a
suitable paradigm for modeling the effect of drugs on HIV [5]
and the influence of leaders on the dynamics of leader-follower
consensus networks [12]. In these applications, the structure
of decentralized control is important for capturing the effi-
cacy of the drugs on different HIV mutants and influence of
noise on the quality of consensus, respectively. This model can
also be used to study chemical reaction networks and transporta-
tion networks.

The mathematical properties of positive systems can be
exploited for efficient or structured controller design. In
[17], Tanaka and Langbort show that the kalman-yakubovich-
popov lemma greatly simplifies for positive systems, thereby
enabling decentralized H∞ synthesis via semidefinite pro-
gramming (SDP). In [18], it is shown that a static output-
feedback problem can be solved via linear programming
(LP) for a class of positive systems. Briat [19] and Ebihara
et al. [20] develop necessary and sufficient conditions for
robust stability of positive systems with respect to induced
L1–L∞ norm-bounded perturbations. In [21] and [22], it is
shown that the structured singular value is equal to its con-
vex upper bound for positive systems so assessing robust sta-
bility with respect to induced L2 norm-bounded perturbations
becomes tractable.
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It has been recently shown that the design of unconstrained
decentralized controllers for positive systems can be cast as
a convex problem [18], [23]. However, since structural con-
straints cannot be handled by the LP or linear matrix inequality
approaches presented in [18] and [23], references [7]–[10] de-
sign L1 and H∞ controllers that satisfy such constraints, but
achieve suboptimal performance. Furthermore, convexity of the
weighted L1 norm for structured decentralized control of pos-
itive systems was established in [24] and [25] and optimized
switching strategies were considered in [26]–[28].

The paper is organized as follows. In Section II, we formulate
the regularized optimal control problem for a class positive
systems. In Section III, we establish convexity of both H2 and
H∞ control problems and derive a graph theoretic condition
that guarantees continuous differentiability of the H∞ objective
function. In Section IV, we study leader selection in directed
networks. In Section V, we design combination drug therapy for
HIV treatment. Finally, in Section VI, we conclude the paper
and summarize future research directions.

II. PROBLEM FORMULATION AND BACKGROUND

We first provide background on graph theory and positive sys-
tems, describe the system under study, and formulate structured
decentralized H2 and H∞ optimal control problems.

A. Background Material

Notation: The set of real numbers is denoted by R and the sets
of nonnegative and positive reals are R+ and R++ . The set of
n × n Metzler matrices (matrices with nonnegative off-diagonal
elements) is denoted by Mn×n . We write A > 0 (A ≥ 0) if A
has positive (nonnegative) entries and A � 0 (A � 0) if A is
symmetric and positive (semi)definite. We define the sparsity
pattern of a vector u, sp (u) as the set of indices for which ui is
nonzero, ‖u‖1 :=

∑
i |ui | is the �1 norm, and K†: Rn×n → Rm

is the adjoint of a linear operator K: Rm → Rn×n if it satisfies,
〈X,K(u)〉 = 〈K†(X), u〉 for all u ∈ Rm and X ∈ Rn×n .

Definition 1 (Graph associated with a matrix): G(A) =
(V, E) is the graph associated with a matrix A ∈ Rn×n , with
the set of nodes (vertices) V := {1, . . . , n} and the set of edges
E := {(i, j)|Aij 
= 0}, where (i, j) denotes an edge pointing
from node j to node i.

Definition 2 (Strongly connected graph): A graph (V, E)
is strongly connected if there is a directed path between any two
distinct nodes in V .

Definition 3 (Weakly connected graph): A graph (V, E) is
weakly connected if replacing its edges with undirected edges
results in a strongly connected graph.

Definition 4 (Balanced graph): A graph (V, E) is balanced
if, for every node i ∈ V , the sum of edge weights on the edges
pointing to node i is equal to the sum of edge weights on the
edges pointing from node i.

Definition 5: A dynamical system is positive if, for any
nonnegative initial condition and any nonnegative input, the
output is nonnegative for all time. A linear time-invariant system

ẋ = Ax + Bd

z = Cx

is positive if and only if A ∈ Mn×n , B ≥ 0, and C ≥ 0.
We now state three lemmas that are useful for the analysis of

positive linear time invariant systems.
Lemma 1 (From [29]): Let A ∈ Mn×n and let Q ∈ Rn×n

be a positive definite matrix with nonnegative entries. Then
1) eA ≥ 0;
2) for Hurwitz A, the solution X to the algebraic Lyapunov

equation

AX + XAT + Q = 0

is elementwise nonnegative.
Lemma 2: The left and right principal singular vectors w

and v of A ∈ Rn×n
+ are nonnegative. If A ∈ Rn×n

++ , w and v are
positive and unique.

Proof: The result follows from the application of the Perron
theorem [30, Th. 8.2.11] to AAT and AT A. �

Lemma 3 (From [24]): Let b, c ∈ Rn be nonnegative. Then,
for any t ≥ 0

cT e(A+K (u))tb

is a convex function of u.

B. Decentralized Optimal Control

We consider a class of control problems

ẋ = (A + K(u)) x + Bd

z = Cx (1)

where x(t) ∈ Rn is the state vector, z(t) ∈ Rm is the perfor-
mance output, d(t) ∈ Rp is the disturbance input, and u ∈ Rm

is the control input. Since control enters into the dynamics in
a multiplicative fashion, optimal design of u for system (1) is,
in general, a challenging nonconvex problem. In what follows,
we introduce an assumption which implies that system (1) is
positive for any u. As we demonstrate in Section III, under
this assumption both the H2 and H∞ structured decentralized
optimal control problems are convex.

This class of problems can be used to model a variety of
control challenges that arise in, e.g., chemical reaction networks
and transportation networks. In this paper, we consider leader
selection in directed consensus networks as well as combination
drug therapy design for HIV treatment.

Assumption 1: The matrix A in (1) is Metzler, the matrices
B and C are nonnegative, and the diagonal matrix K(u) :=
diag (Du) with D ∈ Rn×m is a linear function of u.

Our objective is to design a stabilizing diagonal matrix K(u)
that minimizes amplification from d to z. To quantify the average
effect of the impulsive disturbance input d, we consider the L2
norm of the resulting impulse response, i.e.,

J2(u) :=
∫ ∞

0
trace

(
C e(A+K (u))tB BT e(A+K (u))T t CT

)
dt.

(2a)

This performance metric is equivalent to the square of the H2
norm of system (1) which also has a well-known stochastic
interpretation [31]. To quantify the worst-case input–output
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amplification of (1), we consider the H∞ norm, defined as

J∞(u) := sup
ω∈R

σ̄
(
C (jωI − A − K(u))−1B

)
(2b)

where σ̄(·) denotes the largest singular value of a given matrix
when A + K(u) is Hurwitz and ∞ otherwise. To limit the size
of the control input u and promote desired structural properties,
we consider the regularized optimal control problem

minimize
u

J(u) + g(u)

subject to A + K(u) Hurwitz. (3)

The regularization function g in (3) can be any convex function,
e.g., a quadratic penalty uT Ru with R � 0 to limit the magni-
tude of u, an �1 penalty to promote sparsity of u, or the indicator
function associated with a convex set C to ensure that u ∈ C. We
refer the reader to [32], [33] for an overview of recent uses of
regularization in control-theoretic problems.

We now review some recent results. Under Assumption 1 the
matrix A + K(u) is a Metzler and its largest eigenvalue is real
and a convex function of u [34]. Recently, it has been shown
that the weighted L1 norm of the response of system (1) from a
nonnegative initial condition x0 ≥ 0

∫ T

0
cT x(t)dt

is a convex function of u for every c ∈ Rn
+ [24], [25]. Further-

more, the approach in [17] can be used to cast the problem of
unstructured decentralized H∞ control of positive systems as
an SDP and [23] can be used to cast it as an LP. However, both
the SDP and LP formulations require a change of variables that
does not preserve the structure of K(u). Consequently, it is of-
ten difficult to design controllers that are feasible for a given
noninvertible operator K or to impose structural constraints or
penalties on u.

III. CONVEXITY OF OPTIMAL CONTROL PROBLEMS

We next establish the convexity of the H2 and H∞ norms
for systems that satisfy Assumption 1, derive a graph theoretic
condition that guarantees continuous differentiability of J∞,
and develop a customized algorithm for solving optimization
problem (3) even in the absence of differentiability.

A. Convexity of J2 and J∞

We first establish convexity of theH2 optimal control problem
and provide the expression for the gradient of J2 .

Proposition 4: Let Assumption 1 hold and let Acl(u) :=
A + K(u) be a Hurwitz matrix. Then, J2 is a convex function
of u and its gradient is given by

∇J2(u) = 2K†(XcXo) (4)

where Xc and Xo are the controllability and observability grami-
ans of the closed-loop system (1)

Acl(u)Xc + XcA
T
cl(u) + BBT = 0 (5a)

AT
cl(u)Xo + XoAcl(u) + CT C = 0. (5b)

Proof: We first establish convexity of J2(u) and then derive
its gradient. The square of the H2 norm is given by

J2(u) =

{〈
CT C,Xc

〉
, Acl(u) Hurwitz

∞, otherwise

where the controllability gramian Xc of the closed-loop system
is determined by the solution to Lyapunov equation (5a). For
Hurwitz Acl(u), Xc can be expressed as,

Xc =
∫ ∞

0
eA c l (u)tBBT eAT

c l (u)tdt.

Substituting into 〈CT C,Xc〉 and rearranging terms yields

J2(u) =
∫ ∞

0
‖CeA c l (u)tB‖2

F dt

=
∫ ∞

0

∑

i,j

(
cT
i eA c l (u)tbj

)2
dt

where cT
i is the ith row of C and bj is the jth column of B. From

Lemma 3, it follows that cT eA c l (u)tb is a convex function of u
for nonnegative vectors c and b. Since the range of this function
is R+ and (·)2 is nondecreasing over R+ , the composition rules
for convex functions [35] imply that (cT

i eA c l (u)tbj )2 is convex
in u. Convexity of J2(u) follows from the linearity of the sum
and integral operators.

To derive ∇J2 , we form the associated Lagrangian

L(u,Xc,Xo) =
〈
CT C,Xc

〉

+
〈
Xo,Acl(u)Xc + XcA

T
cl(u) + BBT

〉

where Xo is the Lagrange multiplier associated with equality
constraint (5a). Taking variations of L with respect to Xo and
Xc yields Lyapunov equations (5a) and (5b) for controllability
and observability gramians, respectively. Using Acl(u) = A +
K(u) and the adjoint of K, we rewrite the Lagrangian as

L(u,Xc,Xo) = 2
〈
K†(XcXo), u

〉
+

〈
CT C,Xc

〉

+
〈
Xo,AXc + XcA

T + BBT
〉
.

Taking the variation of L with respect to u yields (4). �
Remark 1: The quadratic cost

∫ T

0
xT (t)CT C x(t) dt

is also convex over a finite or infinite time horizon for a piece-
wise constant u. This follows from [24, Lemma 4] and suggests
that an approach inspired by the model predictive control (MPC)
framework can be used to compute a time-varying optimal con-
trol input for a finite horizon problem.

Remark 2: The expression for∇J2 in Proposition 4 remains
valid for any linear system and any linear operator K: Rm →
Rn×n . However, convexity of J2 holds under Assumption 1 and
is not guaranteed in general.

We now establish the convexity of the H∞ control problem
and provide expression for the subdifferential set of J∞.

Proposition 5: Let Assumption 1 hold and let Acl(u) :=
A + K(u) be a Hurwitz matrix. Then, J∞ is a convex function
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of u and its subdifferential set is given by

∂J∞(u) =

{
∑

i

αiK
† (

A−1
cl (u)Bviw

T
i CA−1

cl (u)
) |

wT
i (CA−1

cl (u)B)vi = J∞(u), α ∈ P
}

(6)

where K† is the adjoint of the operator K and P is the simplex,
P := {αi | αi ≥ 0,

∑
i αi = 1}.

Proof: We first establish convexity of J∞(u) and then de-
rive the expression for its subdifferential set. For positive sys-
tems, the H∞ norm achieves its largest value at ω = 0 [17] and
from (2b) we thus have J∞(u) = σ̄(−CA−1

cl (u)B). To show
convexity of J∞(u), we show that −CA−1

cl (u)B is a convex
and nonnegative function of u, that σ̄(X) is a convex and non-
decreasing function of a nonnegative argument X and leverage
the composition rules for convex functions [35].

Since Acl(u) is Hurwitz, its inverse can be expressed as

−A−1
cl (u) =

∫ ∞

0
eA c l (u)tdt. (7)

Convexity of cieA c l (u)tbj by Lemma 3 and linearity of integra-
tion implies that each element of the matrix

−CA−1
cl (u)B = C

∫ ∞

0
eA c l (u)tdt B

is convex in u and, by part (a) of Lemma 1, nonnegative.
The largest singular value σ̄(X) is a convex function of the

entries of X [35]

σ̄(X) = sup
‖w‖=1,‖v‖=1

wT Xv (8)

and Lemma 2 implies that the principal singular vectors vi and
wi that achieve the supremum in (8) are nonnegative for X ≥ 0.
Thus

wT
i

(
X + βej eT

k

)
vi ≥ wT

i Xvi

for any β ≥ 0, thereby implying that σ̄(X) is nondecreas-
ing over X ≥ 0. Since each element of −CA−1

cl (u)B ≥ 0 is
convex in u, these properties of σ̄(·) and the composition
rules for convex functions [35] imply convexity of J∞(u) =
σ̄(−CA−1

cl (u)B).
To derive ∂J∞(u), we note that the subdifferential set of the

supremum over a set of differentiable functions

f(x) = sup
i∈I

fi(x)

is the convex hull of the gradients of the functions that achieve
the supremum [36, Th. 1.13],

∂f(x) =

⎧
⎨

⎩

∑

j |fj (x)=f (x)

αj∇fj (x)|α ∈ P
⎫
⎬

⎭
.

Thus, the subgradient of σ̄(X) with respect to X is given by

∂σ̄(X) =

⎧
⎨

⎩

∑

j

αjwjv
T
j | wT

j Xvj = σ̄(X), α ∈ P
⎫
⎬

⎭
.

Finally, the matrix derivative of X−1 in conjunction with the
chain rule yield (6). �

Remark 3: For a positive system all induced norms are
convex functions of −CA−1(u)B, which is the transfer matrix
evaluated at zero frequency. Lemma 3 thus implies that all in-
duced norms of system (1) are convex functions of u. We show
convexity of the H∞ norm as it is of particular interest in our
study and the proof facilitates the derivation of the gradient.

Remark 4: The adjoint of the linear operator K, introduced
in Assumption 1, with respect to the standard inner product is
K†(X) = DT diag(X). For positive systems, Lemma 1 implies
that the gramians Xc and Xo are nonnegative matrices. Thus,
the diagonal of the matrix XcXo is positive and it follows that J2
is a monotone function of the diagonal matrix K(u). Similarly,
−A−1

cl (u)Bvi and −wT
i CA−1

cl (u) are nonnegative and thus J∞
is also a monotone function of K(u).

B. Differentiability of the H∞ Norm

In general, the H∞ norm is a nondifferentiable function of the
control input u. Even though, under Assumption 1, the decen-
tralized H∞ optimal control problem (3) for positive systems
is convex, it is still difficult to solve because of the lack of dif-
ferentiability of J∞. Nondifferentiable objective functions often
necessitate the use of subgradient methods, which can converge
slowly to the optimal solution.

In what follows, we prove that J∞ is a continuously differ-
entiable function of u for weakly connected G(A). Then, by
noting that J∞ is nondifferentiable only when G(A) contains
disconnected components, we develop a method for solving (3)
that outperforms the standard subgradient algorithm.

1) Differentiability Under Weak Connectivity: In this sec-
tion, we assume that the matrices B and C are square and that
their main diagonals are positive. To show the result, we first
require two technical lemmas.

Lemma 6: Let M ≥ 0 be a matrix whose main diagonal is
strictly positive and whose associated graph G(M) is weakly
connected. Then, the graphs associated with G(MMT ) and
G(MT M) have self loops and are strongly connected.

Proof: Positivity of the main diagonal of M implies that
if Mij is nonzero, then (MT M)ij and (MMT )ij are nonzero;
by symmetry, (MT M)j i and (MMT )j i are also nonzero. Thus,
G(MT M) andG(MMT ) contain all the edges (i, j) inG(M) as
well as their reversed counterparts (j, i). Since G(M) is weakly
connected, G(MT M) and G(MMT ) are strongly connected.
The presence of self loops follows directly from the positivity
of the main diagonal of M . �

Lemma 7: Let M ≥ 0 be a matrix whose main diagonal is
strictly positive and whose associated graph G(M) is weakly
connected. Then, the principal singular value and the principal
singular vectors of M are unique.

Proof: Note that G(Mk ) has an edge from i to j if M
contains a directed path of length k from i to j [37, Lemma 1.32].
SinceG(MMT ) andG(MT M) are strongly connected with self
loops, Lemma 6 implies the existence of k̄ such that (MT M)k >
0 and (MMT )k > 0 for all k ≥ k̄, and the Perron Theorem [30,
Th. 8.2.11] implies that (MT M)k and (MMT )k have unique
maximum eigenvalues for all k ≥ k̄.
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The eigenvalues of (MT M)k and (MMT )k are related to
the singular values of M by

λi

((
MT M

)k
)

= λi

((
MMT

)k
)

= (σi(M))2k

and the eigenvectors of (MT M)k and (MMT )k are determined
by the right and the left singular vectors of M , respectively.
Since the principal eigenvalue and eigenvectors of these matri-
ces are unique, the principal singular value and the associated
singular vectors of M are also unique. �

Theorem 8: Let Assumption 1 hold, let Acl(u) := A +
K(u) be a Hurwitz matrix, and let matrices B and C have
strictly positive main diagonals. If the graph G(A) associated
with A is weakly connected, J∞(u) is continuously differen-
tiable.

Proof: Lemma 1 implies that eA c l (u) ≥ 0. From [37,
Lemma 1.32], G(Mk ) has an edge from i to j if there is a
directed path of length k from i to j in G(M). Weak connectiv-
ity of G(A) implies weak connectivity of G(Acl(u)), G(Ak

cl(u)),
eA c l (u)t and, by (7), of G(−A−1

cl (u)).
Since Acl(u) is Hurwitz and Metzler, its main diagonal must

be strictly negative; otherwise, d
dt xi ≥ 0 for some xi , contra-

dicting stability and thus the Hurwitz assumption. Equation (7)
and Lemma 1 imply A−1

cl (u) ≤ 0 and, since Acl(u) is Met-
zler, A−1

cl (u)Acl(u) = I can only hold if the main diagonal of
−A−1

cl (u) is strictly positive.
Moreover, since the diagonals of B and C are strictly pos-

itive, G(−CA−1
cl (u)B) is weakly connected and the diagonal

of −CA−1
cl (u)B is also strictly positive. Thus, Lemma 7 im-

plies that the principal singular value and singular vectors of
−CA−1

cl (u)B are unique, that (6) is unique for each stabilizing
u, and that J∞(u) is continuously differentiable. �

2) Nondifferentiability for Disconnected G(A): Theo-
rem 8 implies that under a mild assumption on B and C, J∞
is only nondifferentiable when the graph associated with A
has disjoint components. Proximal methods and its accelerated
variants [38] generalize gradient descent to nonsmooth prob-
lems when the proximal operator of the nondifferentiable term
in the objective function is readily available. However, since
there is no explicit expression for the proximal operator of J∞,
in general we have to use subgradient methods to solve (3).

To a large extent, subgradient methods are inefficient because
they do not guarantee descent of the objective function. How-
ever, under the following mild assumption, the subgradient of
J∞, ∂J∞, can be conveniently expressed and a descent direction
can be obtained by solving a linear program.

Assumption 2: Without loss of generality, let Acl(u) be
permuted such that Acl(u) = blkdiag(A1

cl(u), . . . , Am
cl (u)) is

block diagonal and let G(Ai
cl(u)) be weakly connected for ev-

ery i. Moreover, the matrices B = blkdiag(B1 , . . . , Bm ) and
C = blkdiag(C1 , . . . , Cm ) are block diagonal and partitioned
conformably with the matrix Acl(u).

Theorem 9: Let Assumptions 1 and 2 hold and let Acl(u) :=
A + K(u) be a Hurwitz matrix. Then,

J∞(u) = max
i

Ji
∞(u) (9a)

where Ji
∞(u) := σ̄(Ci(Ai

cl(u))−1Bi). Moreover, every element
of the subgradient of J∞(u) can be expressed as the convex
combination of a finite number of vectors fj := ∇Jj

∞(u) cor-
responding to the gradients of the functions Jj

∞(u) that achieve
the maximum in (9a), i.e., J∞(u) = Jj

∞(u)

∂J∞(u) = {Fα|α ∈ P} (9b)

where the columns of F are given by fj and P is the simplex.
Proof: Since Acl(u) is a block diagonal matrix, so

is A−1
cl (u) and Assumption 2 implies that −CA−1

cl (u)B =
blkdiag(−Ci(Ai

cl(u))−1Bi) is also block diagonal. Thus,

J∞(u) = σ̄(−CA−1
cl (u)B) = max

i
σ̄

(−Ci(Ai
cl(u))−1Bi

)

which proves (9a). Theorem 8 implies that each Ji
∞(u) is con-

tinuously differentiable which establishes (9b). �
When g is differentiable, we leverage the above convenient

expression for ∂J∞ to select an element of the subdifferen-
tial set which, with an abuse of terminology, we call the opti-
mal subgradient. The optimal subgradient is guaranteed to be
a descent direction for (3) and it is defined as the member of
∂(J∞(u) + g(u)) that solves

minimize
v ,α

max
j

(
vT

(
fj + ∇g(u)

))
(10a)

subject to v = −(Fα + ∇g(u)), α ∈ P (10b)

vT
(
fj + ∇g(u)

)
< 0, for all j (10c)

where F and fj are defined as in Theorem 9. By (9a), J∞(u)
is the maximum of differentiable functions Ji

∞(u) and prob-
lem (10) forms a search direction using the gradients of the
functions Jj

∞ that achieve that maximum. While constraint (10b)
ensures that v ∈ ∂J∞(u) + ∇g(u), (10c) ensures that v is a de-
scent direction for each Jj

∞ and thereby guarantees that v is a
descent direction for J∞. Finally, objective function (10a) is the
maximum of the directional derivatives of Jj

∞ in the direction
v, i.e., the directional derivative of the objective function in (3)
in the search direction.

Problem (10) can be solved efficiently because it is a linear
program. Moreover, the optimality condition for (3), ∂J∞(u) +
∇g(u) 
 0, can be checked by solving a linear program to verify
the existence of an α ∈ P such that Fα + ∇g(u) = 0.

3) Customized Algorithm: Ensuring a descent direction
enables principled rules for step-size selection and makes prob-
lem (3) with nondifferentiable g tractable via the augmented-
Lagrangian-based approaches. Reformulation of (3)

minimize
u,v

J∞(u) + g(v)

subject to u − v = 0 (11)

leads to the associated augmented Lagrangian

Lμ(u, v; λ) := J∞(u) + g(v) + λT (u − v) + 1
2μ ‖u − v‖2

where v is an auxiliary variable and μ is a positive parame-
ter. Formulation (11) is convenient for the alternating direction
method of multipliers (ADMM) [39], which minimizes Lμ sep-
arately over u and v and updates λ until convergence. ADMM
is highly sensitive to the choice of μ and it may require many
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iterations to converge. In contrast, the more mature and ro-
bust method of multipliers (MM) [40] has effective rules for
adaptively updating μ, which leads to faster convergence. It is
difficult to directly apply MM to (11) because it requires joint
minimization of Lμ over (u, v) and both g and J∞ are nondif-
ferentiable. However, when the proximal operator of g is readily
available, e.g., when g is the �1 norm or an indicator function
of a convex set with simple projection [41], explicit minimiza-
tion over v is achieved by v�

μ(u, λ) = proxμg (u + μλ). Sub-
stitution of v�

μ(u, λ) into Lμ yields the proximal augmented
Lagrangian [42]

Lμ

(
u, v�

μ(u, λ); λ
)

= J∞(u) + Mμg (u + μλ) − μ
2 ‖λ‖2

where Mμg is the Moreau envelope of g and is continuously
differentiable, even when g is not [41]; see [42] for details. Since
J∞ is the only nondifferentiable component of the proximal
augmented Lagrangian, the optimal subgradient (10) can be used
to minimize it over u. This equivalently minimizes Lμ(u, v; λ)
over (u, v) and leads to a tractable MM algorithm

uk+1 = argmin
u

Lμ

(
u, v�

μk (u, λk ); λk
)

λk+1 = λk + 1
μk

(
uk+1 − proxμk g

(
uk+1 + μkλk

))
.

This algorithm minimizes the proximal augmented Lagrangian
over u, updates λ via gradient ascent, and it represents an ap-
pealing alternative to ADMM for problems of the form (3).
In particular, an adaptive selection of the parameter μ leads to
improved practical performance relative to ADMM [42].

IV. LEADER SELECTION IN DIRECTED NETWORKS

We now consider the special case of system (1), in which the
matrix A is given by a graph Laplacian, and study the leader se-
lection problem for directed consensus networks. The question
of how to optimally assign a predetermined number of nodes to
act as leaders in a network of dynamical systems with a given
topology has recently emerged as a useful proxy for identifying
important nodes in a network [11]–[16]. Even though signif-
icant theoretical and algorithmic advances for undirected net-
works have been made, the leader selection problem in directed
networks remains open.

A. Problem Formulation

We describe consensus dynamics and state the problem.
1) Consensus Dynamics: The weighted directed network

G(L) with n nodes and the graph Laplacian L obeys consensus
dynamics, in which each node i updates its state xi using relative
information exchange with its neighbors

ẋi = −
∑

j∈Ni

Lij (xi − xj ) + di.

Here, Ni := {j|(i, j) ∈ E}, Lij ≥ 0 is a weight that quantifies
the importance of the edge from node j to node i, di is a distur-
bance, and the aggregate dynamics are [43]

ẋ = −Lx + d

where L is the graph Laplacian of the directed network [44].

The graph Laplacian always has an eigenvalue at zero that
corresponds to a right eigenvector of all ones, L1 = 0. If this
eigenvalue is simple, all node values xi converge to a constant
x̄ in the absence of an external input d. When G(L) is balanced,
x̄ = (1/n)1T x(0) is the average of the initial node values. In
general, x̄ = wT x(0), where w is the left eigenvector of L cor-
responding to zero eigenvalue, wT L = 0. IfG(L) is not strongly
connected, L may have additional eigenvalues at zero and the
node values converge to distinct groups whose number is equal
to or smaller than the multiplicity of the zero eigenvalue.

2) Leader Selection: In consensus networks, the dynamics
are governed by relative information exchange and the node
values converge to the network average. In the leader selection
paradigm [12], certain “leader” nodes are additionally equipped
with absolute information that introduces negative feedback on
the states of these nodes. If suitable leader nodes are present, the
dynamical generator becomes a Hurwitz matrix and the states
of all nodes asymptotically converge to zero.

The node dynamics in a network with leaders is

ẋi = −
∑

j∈Ni

Lij (xi − xj ) − uixi + di

where ui ≥ 0 is the weight that node i places on its absolute
information. The node i is a leader if ui > 0, otherwise it is a
follower. The aggregate dynamics can be written as

ẋ = − (L + diag(u)) x + d

and placed in the form (1) by taking A = −L, B = C = I , and
K(u) = −diag(u). We evaluate the performance of a leader
vector u ∈ Rn using the H2 or H∞ performance metrics J2
or J∞, respectively. We note that this system is marginally
stable in the absence of leaders and much work on consen-
sus networks focuses on driving the deviations from the average
node values to zero [45]. Instead, we here focus on driving the
node values themselves to zero.

We formulate the combinatorial problem of selecting N lead-
ers to optimize either H2 or H∞ norm as follows.

Problem 1: Given a network with a graph Laplacian L and
a fixed leader weight κ, find the optimal set of N leaders that
solves

minimize
u

J(u)

subject to 1T u = Nκ, ui ∈ {0, κ}
where J is a performance metrics described in Section II-B,
with A = −L, B = C = I , and K(u) = diag(u).

Fitch et al. [13] and [14] derive explicit expressions for leaders
in undirected networks. However, these expressions are efficient
only for very few or very many leaders. Instead, we follow [12]
and develop an algorithm that relaxes the integer constraint to
obtain a lower bound on Problem 1 and use greedy heuristics to
obtain an upper bound.

Considering leader selection in directed networks adds the
challenge of ensuring stability. At the same time, we can lever-
age existing results on leader selection in undirected networks
to derive efficient upper bounds on Problem 1.
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Fig. 1. Directed network and the sparsity pattern of the corresponding
graph Laplacian. This network is stabilized if and only if either node 1 or
node 2 are made leaders.

B. Stability for Directed Networks

For a vector of leader weights u to be feasible for Problem 1,
it must stabilize system (1), i.e., −(L + diag(u)) must be a
Hurwitz matrix. When G(L) is undirected and connected, any
leader will stabilize (1). However, this is not the case for directed
networks. For example, making node 1 or 2 a leader stabilizes
the network in Fig. 1, but making node 3 or 4 a leader does not.
Theorem 10 provides a necessary and sufficient condition for
stability.

Theorem 10: Let L be a weighted directed graph Laplacian
and let u ≥ 0. The matrix −(L + diag(u)) is Hurwitz if and
only if w ◦ u 
= 0 for all nonzero w with wT L = 0, where ◦ is
the elementwise product.

Proof: (⇐) If w ◦ u = 0, wT diag(u) = 0. If, in addition,
wT L = 0, we have

−wT (L + diag(u)) = 0 (12)

and, therefore, zero is an eigenvalue of −(L + diag(u)).
(⇒) Since the graph Laplacian L is row stochastic and

diag(u) is diagonal and nonnegative, the Gershgorin circle the-
orem [30] implies that the eigenvalues of −(L + diag(u)) are at
most 0. To show that−(L + diag(u)) is Hurwitz, we show that it
has no eigenvalue at zero. Assume there exists a nonzero w such
that (12) holds. This implies that either wT L = wT diag(u) = 0
or that wT L = −wT diag(u). The first case is not possible be-
cause, by assumption, wT diag(u) = (w ◦ u)T 
= 0 for any w
such that wT L = 0. If the second case is true, then wT Lv =
−wT diag(u)v must also hold for all v. However, if we take
v = 1, then wT L1 = 0 but −wT diag(u)1 is nonzero. �

Remark 5: Only the set of leader nodes is relevant to the
question of stability. If u does not stabilize (1), no positive
weighting of the vector of leader nodes, α ◦ u with α ∈ RN

++ ,
will stabilize (1). Similarly if u stabilizes (1), every α ◦ u will.

Corollary 11: If G(L) is strongly connected, any choice of
leader node will stabilize (1).

Proof: Since the graph Laplacian associated with a strongly
connected graph is irreducible, the Perron–Frobenius theo-
rem [30] implies that the left eigenvector associated with −L is
positive. Thus, w ◦ u 
= 0 for any nonzero u and system (1) is
stable by Theorem 10. �

Remark 6: The condition in Theorem 10 requires that there
is a path from the set of leader nodes to every node in the
network. This can be enforced by extracting disjoint “leader
subsets” Sj which are not influenced by the rest of the network,
i.e., (vj )T L = 0 where vj

i = 1 if i ∈ Sj and vj
i = 0 otherwise,

and which are each strongly connected components of the origi-
nal network. Stability is guaranteed if there is at least one leader

node in each such subset Sj , e.g., for the network in Fig. 1, there
is one leader subset S1 = {1, 2}. By Corollary 11, S1 contains
all nodes when the network is strongly connected.

C. Bounds for Problem 1

To approach combinatorial Problem 1, we derive bounds on
its optimal objective value. These bounds can also be used to
implement a branch-and-bound approach [46].

1) Lower Bound: By relaxing the combinatorial constraint
in Problem 1, we formulate the optimization problem

minimize
u

J(u)

subject to u ∈ κPN (13)

where κPN := {u|∑i ui = Nκ, ui ≤ κ} is the “capped” sim-
plex. The results of Section III, establish the convexity of prob-
lem (13). Using a recent result on efficient projection onto
PN [47], this problem can be solved efficiently via proximal
gradient methods [38] to provide a lower bound on Problem 1.

When G(L) is not strongly connected, additional constraints
can be added to enforce the condition in Theorem 10 and thus
guarantee stability. Let the sets Sj denote “leader subsets” from
which a leader must be chosen, as discussed in Remark 6. Then,
the convex problem

minimize J(u)

subject to u ∈ κPN ,
∑

i∈Sj

ui ≥ κ, for all j (14)

relaxes the combinatorial constraint and guarantees stability. We
denote the resulting lower bounds on the optimal values of the
H2 and H∞ versions of Problem 1 with N leaders by J lb

2 (N)
and J lb

∞(N), respectively.
2) Upper Bounds for Problem 1: If k denotes the number

of subsets Sj , a stabilizing candidate solution to Problem 1
can be obtained by “rounding” the solution to (14) by taking
N leaders to contain the largest element from each subset Sj

and N − k largest remaining elements. The greedy swapping
algorithm proposed in [12] can further tighten this upper bound.

Recent work on leader selection in undirected networks can
also provide upper bounds for Problem 1 whenG(L) is balanced.
The symmetric component of the Laplacian of a balanced graph,
Ls := 1

2 (L + LT ), is the Laplacian of an undirected network.
The exact optimal leader set for an undirected network can be
efficiently computed when N is either small or large [13], [14].
Since the performance of the symmetric component of a system
provides an upper bound on the performance of the original
system, these sets of leaders will have better performance with
L than with Ls for both the H2 [48, Corollary 3] and H∞
norms [49, Proposition 4].

Even when L does not represent a balanced network, J2
and J∞ are, respectively, upper bounded by the trace and the
maximum eigenvalue of 1

2 (Ls + K)−1 . For small numbers of
leaders, they can be efficiently computed using rank-one inver-
sion updates. A similar approach was used in [13] and [14] to
derive optimal leaders for undirected networks. Moreover, this
approach yields a stabilizing set of leaders [48, Lemma 1].
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Fig. 2. H2 performance of optimal leader set ( ) and upper
bounds resulting from “rounding” ( ) and the optimal leaders
for the undirected network ( ). Performance is shown as a percent
increase in J2 relative to J lb

2 (N ). (a) Balanced Network with 8 nodes,
12 edges. (b) Performance of optimal leaders and two leader selection.

D. Additional Comments

We now provide additional discussion on interesting aspects
of Problem 1. We first consider the gradients of J2 and J∞.

Remark 7: When K(u) = −diag(u), we have ∇J2 =
−2diag(XcXo). The matrix XcXo often appears in model re-
duction and (∇J2(u))i corresponds to the inner product be-
tween the ith columns of Xc and Xo .

Remark 8: When K(u) = −diag(u), (∂J∞(u))i is given
by the product of −eT

i A−1
cl (u)v and wT A−1

cl (u)ei . The former
quantifies how much the forcing, which causes the largest overall
response of system (1), affects node i, and the latter captures
how much the forcing at node i affects the direction of the largest
output response.

The optimal leader sets for balanced graphs are interesting
because they are invariant under reversal of all edge directions.

Proposition 12: Let G(L) be balanced, let L̂ := LT so that
G(L̂) contains the reversed edges of the graph G(L), and let
Ĵ2 and Ĵ∞ denote the performance metrics (2) with A = −L̂,
K(u) = −diag(u), and B = C = I as in Problem 1. Then,
J2(u) = Ĵ2(u) and J∞(u) = Ĵ∞(u).

Proof: The controllability gramian of (1) defined with
Acl = −(L + diag(u)) solves Lyapunov equation (5a), −(L +
diag(u))Xc − Xc(L + diag(u))T + I = 0, and is also the ob-
servability gramian X̂o of (1) defined with Acl = −(L̂ +
diag(u)) = −(LT + diag(u)) that solves (5b). By definition
of the H2 norm, Ĵ2(u) = trace(X̂o) = trace(Xc) = J2(u).
Since σ̄(M) = σ̄(MT ), Ĵ∞(u) = σ̄(−(L̂ + diag(u))−1) =
σ̄(−(L + diag(u))−1) = J∞(u). �

This invariance is intriguing because the space of balanced
graphs is spanned by cycles. Zelazo et al. [50] explored
how undirected cycles affect undirected consensus networks.
Proposition 12 suggests that directed cycles also play a funda-
mental role in directed consensus networks.

E. Computational Experiments

Here, we illustrate our approach to Problem 1 with N leaders
and the weight κ = 1. The “rounding” approach that we employ
is described in Section IV-C2.

1) Synthetic Example: For the directed network in
Fig. 2(a), let the edges from node 2 to node 7 and from node 7

to node 8 have an edge weight of 2 and let all other edges have
unit edge weights. We compare the optimal set of leaders, de-
termined by exhaustive search, to the set of leaders obtained by
“rounding” the solution to relaxed problem (14); and by the op-
timal selection for the undirected version of the graph via [13],
[14], as discussed in Section IV-C2. In Fig. 2(a),
represents the optimal single leader, represents
the single leader selected by “rounding,” and rep-
resents the optimal single leader for the undirected network.
In Fig. 2(b), we show the H2 performance for 1 to 8 leader
nodes resulting from different methods. Since in general, we
do not know the optimal performance a priori, we plot perfor-
mance degradation (in percents) relative to the lower bound on
Problem 1 obtained by solving problem (14).

Fig. 2(b) shows that neither “rounding” ( ) nor the
optimal selection for undirected networks ( ) achieve uni-
laterally better H2 performance (performance of the optimal
leader sets are shown in ). While the procedure for the
undirected networks selects better sets of 1, 2, and 5 leaders rela-
tive to “rounding,” identifying them is expensive except for large
or small number of leaders [13], [14] and “rounding” identifies
a better set of 4 leaders. This suggests that, when possible, both
sets of leaders should be computed and the one that achieves
better performance should be selected.

2) Neural Network of the Worm C. Elegans: We now con-
sider the network of neurons in the brain of the worm C. Elegans
with 297 nodes and 2359 weighted directed edges. The data
was compiled by [51] from [52]. Inspired by the use of leader
selection as a proxy for identifying important nodes in a net-
work [11]–[15], we employ this framework to identify important
neurons in the brain of C. Elegans.

Three nodes in the network have zero in-degree, i.e., they are
not influenced by the rest of the network. Thus, as discussed
in Remark 6, there are three “leader subsets,” each comprised
of one of these nodes. Theorem 10 implies that system (1) can
only be stable if each of these nodes are leaders.

In Fig. 3(c) and (d), we show J2 and J∞ resulting from
“rounding” the solution to problem (14) to select the additional
1 to 294 leaders. Performance is plotted as an increase (in per-
cents) relative to the lower bound J lb (N) obtained from (14).
This provides an upper bound on suboptimality of the identified
set of leaders. While this value does not provide information
about how J(u) changes with the number of leaders, Remark 4
implies that it monotonically decreases with N .

For both J2 and J∞ performance metrics, Fig. 3(c) and (d)
illustrates that the upper bound is loosest for 25 leaders (1.56%
and 0.48%, respectively). As seen in Fig. 2(b) from the previous
example, whose small size enabled exhaustive search to solve
Problem 1 exactly, the upper bound on suboptimality is not
tight and the exact optimal solution to Problem 1 can differ
by as much 21.75% from the lower bound. This suggests that
“rounding” selects very good sets of leaders for this example.

In Fig. 3(a) and (b), we show the network with ten iden-
tified J2 and J∞ optimal leaders. The size of the nodes is
related to their out-degree and the thickness of the edges is
related to the weight. The marks nodes that must be lead-
ers and the marks the seven additional leaders selected by
“rounding.”
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Fig. 3. C. Elegans neural network with N = 10 (a) J2 and (b) J∞ leaders along with the (c) J2 and (d) J∞ performance of varying numbers of
leaders N relative to J lb (N ). In all cases, leaders are selected via “rounding.”

Fig. 4. Directed network and corresponding A matrix for a virus with
four mutants and two drugs. For this system, J∞ is nondifferentiable.

V. COMBINATION DRUG THERAPY

System (1) also arises in the modeling of combination drug
therapy [5], [7]–[10], and it provides a model for the evolution
of populations of mutants of the HIV virus x in the presence of
a combination of drugs u. The HIV virus is known to be present
in the body in the form of different mutant strands; in (1), the
ith component of the state vector x represents the population
of the ith HIV mutant. The diagonal entries of the matrix A
represent the net replication rate of each mutant, and the off
diagonal entries of A, which are all nonnegative, represent the
rate of mutation from one mutant to another. The control input
uk is the dose of drug k and each column Dk of the matrix D in
K(u) = diag(Du) specifies at what rate drug k kills each HIV
mutant.

A. Nondifferentiability of J∞

The mutation patterns of viruses need not be connected. In
Fig. 4, we show a sample mutation network with two discon-
nected components. For this network, the H∞ norm is nondif-
ferentiable when u1 = u2 . Nondifferentiability and the lack of
an efficiently computable proximal operator necessitates the use
of subgradient methods for solving

minimize
u

J∞(u) + uT u.

As shown in Fig. 5 with h(u) := J∞(u) + uT u, subgradient
methods are not descent methods so small constant or a divergent
series of diminishing step-sizes must be employed.

We compare the performance of the subgradient method with
a constant step-size of 10−2 ( ) and a diminishing step-size
7×10−2

k ( ) with our optimal subgradient method in which
the step-size is chosen via backtracking to ensure descent of
the objective function ( ). We show the objective function
value with respect to iteration number in Fig. 5(a) and the iterates
uk in the (u1 , u2)-plane in Fig. 5(b).

Fig. 5. Comparison of different algorithms starting from initial condition
[2.5 2.8]T . The algorithms are the subgradient method with a constant
step-size ( ), the subgradient method with a diminishing step-size
( ) and our optimal subgradient method where the step-size is chosen
via backtracking to ensure descent of the objective function ( ).
(a) Descent of objective function. (b) Iterates in the (u1 , u2 )-plane.

Fig. 6. Mutation pattern of the HIV mutants from [53]. (a) HIV mutation
network. (b) Sparsity pattern of A.

We run the subgradient methods for 1000 iterations as there
is no principled stopping criterion. Our optimal subgradient
method converged with an accuracy of 10−4 (i.e., there was a
v ∈ ∂J∞(u) such that ‖v + ∇g(u)‖ ≤ 10−4), in 23 iterations.

B. Clinically Relevant Example

Following [7], [8] and using data from [53], we study a system
with 35 mutants and 5 drugs. The sparsity pattern of the matrix
A, shown in Fig. 6, corresponds to the mutation pattern and
replication rates of 33 mutants and K(u) specifies the effect of
drug therapy. Two mutants are not shown in Fig. 6(a) as they
have no mutation pathways to or from other mutants.

Several clinically relevant properties, such as maximum dose
or budget constraints, may be directly enforced in our formula-
tion. Other combinatorial conditions can be promoted via con-
vex penalties, such as drug j requiring drug i via ui ≥ uj or
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TABLE I
OPTIMAL BUDGETED DOSES AND H2 /H∞ PERFORMANCE

Fig. 7. Performance degradation (in percents) relative to the optimal
and strategies that use all five drugs.

Algorithm 1: Sparsity-promoting Algorithm for N Drugs.
Set γ > 0, R � 0, w = 1, ε > 0
while card(uγ ) > N do

uγ = argminu J(u) + uT Ru + γ
∑

i wi |ui |
increase γ, set wi = 1/(ui + ε)

end
u�

N = argminu J(u) + uT Ru
subjectto sp(u) ⊆ sp(uγ )

mutual exclusivity of drugs i and j via ui + uj ≤ 1. We design
optimal drug doses using two convex regularizers g.

1) Budget Constraint: We impose a unit budget constraint
on the drug doses and solve the J2 and J∞ problems using
proximal gradient methods [38], [40]. These can be cast in the
form (3), where g is the indicator function associated with the
probability simplex P . Table I contains the optimal doses and
illustrates the tradeoff between H2 and H∞ performance.

2) Sparsity-Promoting Framework: Although the above
budget constraint is naturally sparsity-promoting, in
Algorithm 1, we augment a quadratically regularized op-
timal control problem with a reweighted �1 norm [54] to select
a homotopy path of successively sparser sets of drugs. We then
perform a “polishing” step to design the optimal doses of the
selected set of drugs. We use 50 logarithmically spaced incre-
ments of the regularization parameter γ between 0.01 and 10 to
identify the drugs and then replace the weighted �1 penalty with
a constraint to prescribe the selected drugs. In Fig. 7, we show
performance degradation (in percents) relative to the optimal
dose that uses all five drugs with B = C = I and R = I .

VI. CONCLUDING REMARKS

We introduce a unifying framework for the H2 and H∞ syn-
thesis of positive systems and use it to address the problems of
leader selection in directed consensus networks and the design
of combination drug therapy for HIV treatment. We identify
classes of networks for which the H∞ norm is a differentiable
function of the control input and develop efficient customized
algorithms that perform well even in the absence of differentia-

bility. Our ongoing work focuses on the design of time-varying
strategies within an MPC framework.
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[45] B. Bamieh, M. R. Jovanović, P. Mitra, and S. Patterson, “Coherence in
large-scale networks: dimension dependent limitations of local feedback,”
IEEE Trans. Automat. Control, vol. 57, pp. 2235–2249, Sep. 2012.

[46] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”
Oper. Res., vol. 14, no. 4, pp. 699–719, 1966.

[47] W. Wang and C. Lu, “Projection onto the capped simplex,” arXiv preprint
arXiv:1503.01002, 2015.

[48] N. K. Dhingra and M. R. Jovanović, “Convex synthesis of symmetric
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