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Abstract— We develop a customized method of multipliers
algorithm to efficiently solve a class of regularized optimal
control problems. By exploiting the problem structure, we
transform the augmented Lagrangian into a form which can
be efficiently minimized using proximal methods. We apply our
algorithm to an `1-regularized state-feedback optimal control
problem and compare its performance with a proximal gradient
algorithm and an alternating direction method of multipliers
algorithm. In contrast to other methods, our algorithm has both
a theoretical guarantee of convergence and fast computation
speed in practice.

Index Terms— Augmented Lagrangian, method of multi-
pliers, non-smooth optimization, proximal methods, sparsity-
promoting optimal control, structure identification.

I. INTRODUCTION

The design of state-feedback controllers which balance
performance with sparsity has been the subject of consid-
erable attention in recent years [1]–[10]. Research efforts
have focused on the identification of classes of tractable
problems and the development of efficient algorithms for
sparse synthesis.

In [1], `1-regularization was applied to the H2-optimal
state-feedback control problem to promote the design of
sparse and block sparse feedback gains. It was shown
that, for a class of systems, this problem can be cast
as a semidefinite program (SDP). An alternating direction
method of multipliers method (ADMM) was utilized in [2]
to design feedback gains which balance closed-loop H2

performance and sparsity. Sparse controllers have also been
designed by solving series of convex problems based on
SDP relaxations [9] and via techniques based on polyno-
mial optimization and rank minimization [10]. In [3], an
LMI-based approximation was used to design structured
dynamic output-feedback controllers subject to a given H∞
performance criterion. In [4], an exact LMI characterization
was introduced for the design of row-sparse controllers and
in [5] an efficient ADMM algorithm was developed. A more
general framework for regularization in the context of control
using atomic norms was provided in [6]–[8].

Our work builds on the sparsity-promoting framework
developed in [1], [2]. In spite of its good performance in
practice, ADMM lacks convergence guarantees for noncon-
vex problems and may converge slowly to high accuracy
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solutions even in convex problems. We thus investigate the
use of the method of multipliers [11]–[13] in combination
with proximal algorithms [14]. Similar to ADMM, this
method utilizes the augmented Lagrangian but provides a
guarantee of convergence to a local minimum [11]–[13].

By exploiting the structure of the regularized optimal
control problem, we are able to transform the augmented
Lagrangian from a nondifferentiable function to a continu-
ously differentiable function. Due to local convexity of the
augmented Lagrangian [11]–[13] and Lipschitz continuity
of the gradient of the smooth part of the objective func-
tion [15], proximal methods can be used to obtain a local
minimum [16]. We initialize step-size using the Barzilai-
Borwein (BB) method [17] and employ a backtracking line
search to ensure convergence [18].

The paper is organized as follows. In Section II, we
describe the sparsity-promoting optimal control problem and
form the associated augmented Lagrangian. In Section III,
we summarize the method of multipliers, transform the
augmented Lagrangian into a continuously differentiable
function, and develop a customized proximal algorithm for
minimization of the augmented Lagrangian. In Section IV,
we provide examples to illustrate the effectiveness of our
approach. In Section V, we conclude with a brief summary
of our work and an overview of ongoing research directions.

II. PROBLEM FORMULATION AND BACKGROUND

We consider the control problem for a linear time-invariant
system,

ẋ = (A − B2F )x + B1 d

z =

[
Q1/2

−R1/2F

]
x

(1)

where d is an exogenous disturbance, z is the performance
output, and Q = QT � 0 and R = RT � 0 are the state and
control performance weights. System (1) describes closed-
loop dynamics under the state-feedback control law,

u = −Fx, F ∈ Rm×n.

We make the standard assumptions that (A,B2) is stabiliz-
able and (A,Q1/2) is detectable.

We are interested in the problem of structure identification
and optimal design of a state-feedback matrix F to minimize
the steady-state variance amplification (i.e., the H2 norm)

lim
t→∞

E
(
xT (t)Qx(t) + uT (t)Ru(t)

)
of the closed-loop system, where E is the expectation op-
erator. The square of the H2 norm can be expressed as a
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function of the feedback gain F as

J(F ) :=

{
trace

(
PB1B

T
1

)
, F stabilizing

+∞, otherwise

where P is the closed-loop observability gramian,

(A−B2F )
T
P + P (A−B2F ) = −

(
Q+ FTRF

)
.

An equivalent characterization in terms of the closed-loop
controllability gramian X ,

(A−B2F )X + X (A−B2F )
T

= −B1B
T
1 (2)

is given by

J(F ) :=

{
trace

(
X (Q + FTRF )

)
, F stabilizing

+∞, otherwise.

A. Sparsity-promoting optimal control

The state-feedback gain F which minimizes the closed-
loop H2 norm is, in general, a dense matrix. In [1], [2],
the authors studied the problem of designing feedback gain
matrices which balance H2 performance with the sparsity of
F . This was achieved by considering a regularized optimal
control problem,

minimize J(F ) + γ g(F ) (SP)

where g(F ) encodes some structural constraint or penalty on
F , and γ > 0 encodes the emphasis on this penalty relative
to the H2 performance. For γ = 0, the problem simplifies to
the H2 state-feedback problem whose solution is given by
the standard linear quadratic regulator. A typical approach is
to solve (SP) for a series of different γ and to generate a
set of feedback gains with different levels of sparsity. From
this set, a sparse feedback gain can be selected or γ can be
refined to yield sparser or denser controllers.

In (SP), the regularization term g(F ) is introduced as a
proxy for managing complexity of the controller. A weighted
`1 penalty on the individual elements Fij ∈ R of the
feedback gain matrix F ,

g1(F ) :=
∑
i, j

wij |Fij | (3)

promotes elementwise sparsity. Similarly, the sum of the
Frobenius norm of the submatrices Fij ∈ Rmi×nj ,

g2(F ) =
∑
i, j

wi,j ‖Fij‖F (4)

can be used to promote sparsity at the level of submatrices.
Here, the feedback gain F can be partitioned into subma-
trices that need not have the same size and the weights
wij ≥ 0 specify the emphasis on sparsity of individual
elements (blocks). Alternative regularization terms g(F ) can
promote the limited use of sensors or actuators [4], [5],
enforce the communication of only relative information [19],
[20], or penalize more advanced measures of controller
complexity [6], [7].

Problem (SP) is difficult to solve directly because J is, in

general, a nonconvex function of F and g is typically not
differentiable. In the absence of a regularization term (i.e.,
for γ = 0), the change of variables Y := FX in (2) can be
used to express the square of the H2 norm as,

J(X,Y ) := trace(QX) + trace (X−1 Y TRY )

and to formulate the H2 optimal control problem as a
semidefinite program (SDP). However, for γ > 0, such
a nonlinear change of coordinates in general introduces a
non-convex dependence of the regularization term on the
optimization variables X and Y . One exception occurs for
promoting row-sparsity of F because of the equivalence
between the row-sparsities of F and Y [4]. In this case, a
penalty on the row-sparsity of Y can be used as a proxy for
promoting row-sparsity of F , which leads to a convex charac-
terization. However, even when the resulting optimal control
problem is convex, solving SDPs with standard solvers is
computationally expensive and customized algorithms are
required for large-scale systems.

B. Alternating direction method of multipliers

By introducing an additional optimization variable G, (SP)
can be equivalently written as

minimize J(F ) + γ g(G)

subject to F − G = 0.
(SP1)

This separates the objective function into two parts, the H2

performance index J and the sparsity-promoting term g. The
augmented Lagrangian associated with (SP1) is

Lρ(F,G; Λ) = J(F ) + γ g(G) + 〈Λ, F − G〉 +
ρ

2
‖F − G‖2F

where Λ is the Lagrange multiplier, ρ is a positive scalar,
and 〈·, ·〉 is the standard matricial inner product. Relative to
the regular Lagrangian, the augmented Lagrangian has an
additional term that introduces a quadratic penalty on the
violation of the linear constraint.

In [2], the alternating direction method of multipliers
(ADMM) was used to compute a solution to (SP1) via a
sequence of iterations [21]. The ADMM algorithm involves
minimization of Lρ separately over F and G and an update
of the Lagrange multiplier Λ,

F k+1 = argmin
F

Lρ(F, Gk; Λk)

Gk+1 = argmin
G

Lρ(F k+1, G; Λk)

Λk+1 = Λk + ρ (F k+1 − Gk+1).

(5)

C. Background on proximal operators

Since our customized algorithms utilize properties of
proximal operators, we next provide a brief overview; for
additional information, see [14].

The proximal operator associated with the function f is
defined by,

proxµf (V ) := argmin
F

f(F ) +
1

2µ
‖F − V ‖2F
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and the optimal value determines its Moreau envelope,

Mµf (V ) := inf
F

f(F ) +
1

2µ
‖F − V ‖2F .

The Moreau envelope is a continuously differentiable func-
tion, even when f is not, and its gradient is given by [14],

∇Mµf (V ) =
1

µ

(
V − proxµf (V )

)
.

In fact, the ADMM algorithm (5) can be equivalently ex-
pressed as [14],

F k+1 = proxρ−1J

(
Gk − (1/ρ) Λk

)
Gk+1 = proxρ−1g

(
F k+1 + (1/ρ) Λk

)
Λk+1 = Λk + ρ (F k+1 − Gk+1).

Since the regularization term g typically has a proximal
operator that is easy to evaluate, the challenging aspect of
ADMM for (SP) lies in the F -minimization step, i.e., in
the evaluation of the proximal operator of the function J .
This operator is not known explicitly and it is determined
by solving a smooth nonconvex optimization problem [2].

III. THE METHOD OF MULTIPLIERS

Recently, ADMM has found wide-spread use in distributed
optimization problems because it can exploit separability
in the components of the objective function regardless of
the form of linear constraint [21]. However, in [2], ADMM
was utilized as a general purpose algorithm for solving the
sparsity-promoting optimal control problem (SP1).

The method of multipliers is the most widely used al-
gorithm for solving constrained nonlinear programing prob-
lems [11]–[13], [22]. While it requires a joint minimization
of the augmented Lagrangian over F and G, in contrast to
ADMM, it is guaranteed to converge to a local minimum
even for nonconvex problems. Furthermore, the parameter
ρ in the augmented Lagrangian Lρ can be systematically
adjusted and the minimization of Lρ can be inexact up to a
priori specified tolerances [22].

In this paper, we exploit the special structure of the linear
constraint in (SP1) to utilize the separability of the optimality
conditions with respect to G in order to eliminate it from the
augmented Lagrangian. This leads to an optimization prob-
lem with a continuously differentiable objective function.

For the remainder of this paper, we will restrict our
attention to the case where the regularization function g
in (SP1) is the weighted `1-norm of the feedback gain,

g(G) :=
∑
i, j

wij |Gij |.

A. Elimination of G

In contrast to ADMM, each iteration of the method of
multipliers requires joint minimization of the augmented
Lagrangian with respect to F and G,

(F k+1, Gk+1) = argmin
F,G

Lρ(F, G; Λk)

followed by the update of the Lagrange multiplier Λ and the
penalty parameter ρ.

The proximal operator associated with g can be used to
eliminate the optimization variable G from the augmented
Lagrangian. Minimization of Lρ with respect to G gives,

G? = proxκg(F + (1/ρ)Λ)

where κ := γwij/ρ. Substitution of G? into the augmented
Lagrangian yields a formulation in terms of the Moreau
envelope,

Lρ(F ; Λ) = J(F ) + γMκg(F + (1/ρ)Λ) − 1

2ρ
‖Λ‖2F (6)

where Lρ(F ; Λ) := Lρ(F, G?; Λ). Properties of proximal
operators summarized in Section II-C imply that this expres-
sion for Lρ(F ; Λ) is at least once continuously differentiable.
This means that minimization of the augmented Lagrangian
with respect to F and G, which is a nondifferentiable
function, can be achieved by minimizing the differentiable
function (6) over F .

B. The method of multipliers algorithm

The method of multipliers alternates between minimiza-
tion of the augmented Lagrangian with respect to F (for a
fixed value of the parameter ρk and the Lagrange multiplier
Λk) and the update of ρ and Λ. In particular, a solution
to (SP1) can be found using

F k+1 = argmin
F

Lρk(F ; Λk) (7a)

Λk+1 = Λk + ρk C
k+1 (7b)

where

Ck+1 := F k+1 − prox(γ/ρk)g
(F k+1 + (1/ρk)Λk) (7c)

denotes the difference between F k+1 and G? at (F k+1,Λk).
An efficient procedure for solving (SP1) via the method

of multipliers is summarized in Algorithm 1. This algorithm
closely follows [22, Algorithm 17.4] where a method for
adaptively adjusting parameter ρk is provided and, compared
to (7), a more refined update of the Lagrange multiplier Λ is
used. In Algorithm 1, η∗ and ω∗ are convergence tolerances,
and ρmax is a maximum value for the penalty parameter ρ.

C. Minimization of the augmented Lagrangian

The main computational burden in the method of multipli-
ers lies in finding a solution to the optimization problem (7a).
Although the differentiability of Lρ implies that gradient
descent may be employed to update F , we utilize the
proximal gradient method to exploit the structure of the
Moreau envelope associated with g.

To avoid clutter, we suppress the superscripts k as well
as the dependence of Lρ on Λk and use the notation {Fm}
to denote the sequence of inner iterates that converge to a
solution of (7a).

We first recall the gradient of the smooth part of the
objective function in (SP); for additional details see [15].
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input: Initial point F 0 and Lagrange multiplier Λ0

initialize: ρ0 = 10, ω0 = 1/ρ0, and η0 = 1/ρ0.10 .

for k = 0, 1, 2, . . .

Solve (7a) using proximal gradient such that

‖∇Lρ(F k+1,Λk)‖F ≤ ωk

if ‖Ck+1‖F ≤ ηk

if ‖Ck+1‖F ≤ η∗ and ‖∇Lρ(F k+1,Λk)‖F ≤ ω∗

stop with approximate solution F k+1

else

Λk+1 = Λk + ρkCk+1, ρk+1 = ρk
ηk+1 = ηk/ρ

0.9
k+1, ωk+1 = ωk/ρk+1

endif

else

Λk+1 = Λk, ρk+1 = min{5ρk, ρmax}
ηk+1 = 1/ρ0.1k+1, ωk+1 = 1/ρk+1

endif
endfor
Algorithm 1: Method of Multipliers for (SP1).

Proposition 1: The gradient of the H2 norm with respect
to F is given by

∇J(F ) = 2(RF − BT2 P )L

where P and L are observability and controllability gramians
of the closed-loop system,

ATclP + PAcl = − (Q + FTRF )

AclL + LATcl = −B1B
T
1

and Acl := A − B2F . Furthermore, ∇J(F ) is a Lipschitz
continuous function on the set of stabilizing feedback gains.

1) Proximal gradient descent: Proximal gradient descent
provides a generalization of standard gradient descent which
can be applied to nonsmooth optimization problems. The
standard gradient descent update Fm+1 = Fm + F̃m where
F̃m = −αm∇f(Fm) can be interpreted as the minimizer
to a simple quadratic approximation of f around the current
iterate Fm,

F̃m = argmin
F̃

f(Fm) +
〈
∇J(Fm), F̃

〉
+

1

2αm
‖F̃‖2F

where αm is the step-size. If f can be expressed as,

f(F ) := f1(F ) + f2(F )

where f1 is differentiable, the proximal gradient update F̃m

is derived from a quadratic approximation of f1,

F̃m = argmin
F̃

f1(Fm) +
〈
∇f1(Fm), F̃

〉
+

1

2αm
‖F̃‖2F

+ f2(Fm + F̃ ).

The update [14] is given by the proximal operator,

Fm+1 = proxαmf2(Fm − αm∇f1(Fm)).

Clearly, the proximal gradient method is most effective when
the proximal operator of the function f2 is easy to evaluate.

2) Proximal gradient step for minimizing Lρ: When g is
the weighted `1-norm, the Moreau envelope Mκg is given
by the Huber function

hκ(v) =

{
1
2 v

2, |v| ≤ κ

κ (|v| − 1
2 κ), |v| ≥ κ

which acts on each element of its matricial argument. Its
gradient is the elementwise saturation operator,

∇hκ(v) = satκ(v) :=

{
v, |v| ≤ κ

κ sign (v), |v| ≥ κ.

The proximal gradient update Fm+1 = Fm + F̃m for
minimizing the Lρ over F in subproblem (7a) is given by,

F̃mij =



−αm((∇J)ij + ρκ), Umij ≥ κ (αmρ+ 1)

−
αm((∇J)ij + ρV mij )

1 + αmρ
, |Umij | ≤ κ (αmρ+ 1)

−αm((∇J)ij − ρκ), Umij ≤ −κ (αmρ+ 1)
(8)

where
V m := Fm + (1/ρ)Λ

Um := V m − αm∇J(Fm).

This expression for the update of F follows from the
separability of the Moreau envelope. Minimizing of the sum
of a quadratic function and a Huber function has an explicit
solution. By defining a := F̃mij , b := (∇J(Fm))ij , and
c := V mij , optimization over each element of F̃ can be
expressed as,

minimize
a

1

2α
a2 + b a + ρ hκ(a+ c).

Setting the gradient to zero yields,

a + α (b + ρ satκ(a + c)) = 0.

Considering the separate cases when satκ(a+ c) = κ, a+ c,
and −κ yields the optimal a,

a? =


−α(b + ρκ), αb− c ≥ κ(αρ + 1)

− α

1 + αρ
(b + ρc), |αb− c| ≤ κ(αρ + 1)

−α(b − ρκ), αb− c ≤ −κ(αρ + 1)

which is equivalent to (8).

3) Step-size selection: Since the objective function is
not smooth, an Armijo backtracking rule cannot be used.
Instead, we backtrack from αm,0 by selecting the smallest
nonnegative integer r such that αm = crαm,0 with c ∈ (0, 1)
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(Lρ − L?ρ)/(L0
ρ − L?ρ)

Fig. 1. Comparison of proximal gradient with BB step-size selection
(solid blue), proximal gradient without BB step-size selection (black dotted)
and gradient descent with BB step-size selection (red dashed) for the
F -minimization step (7a) for an unstable network with 20 subsystems,
γ = 0.0844, and ρ = 10. The y-axis shows the distance from the optimal
objective value relative to initial distance, (Lρ − L?ρ)/(L0ρ − L?ρ).

such that Fm+1 is stabilizing and,

J(Fm+1) ≤ J(Fm) +
〈
∇J(Fm), Fm+1 − Fm

〉
+

1

2αm
‖Fm+1 − Fm‖2F .

This backtracking rule adaptively estimates the Lipschitz
constant of ∇J(F ) to ensure convergence [18].

To improve the speed of the proximal gradient algorithm,
we initialize the step-size using the Barzilai-Borwein (BB)
method [17],

αm,0 =
‖Fm − Fm−1‖2F

〈Fm−1 − Fm,∇J(Fm−1) − ∇J(Fm)〉
.

Figure 1 illustrates the utility of the proximal gradient
method over standard gradient descent and the advantage
of BB step-size initialization.

D. Proximal gradient applied to (SP)

It is also possible to solve (SP) directly using proximal
gradient descent. This algorithm is guaranteed to converge
to a local optimal point [23], but we find that in practice it
takes longer to find a solution than the method of multipliers.
The proximal operator for the weighted `1-norm is the
elementwise softhresholding operator,

Sβ(v) :=

{
0, |v| ≤ β

v − β sign(v), |v| ≥ β

and the update for solving (SP) directly is given by

F k+1 = Sβ
(
F k − αk∇J(F k)

)
where β := γwijαk and αk is the step-size. The backtracking
and BB step-size initialization rules described in Section III-
C.3 are also used here.

Fig. 2. Computation time required to solve (SP) for 10 evenly spaced
values of γ from 0.001 to 1.0 for a mass-spring example with N =
5, 10, 20, 30, 40, 50, 100 masses. Performance of direct proximal gradient
(green dashed �), the method of multipliers (blue solid ×) and ADMM (red
dash-dot �) is displayed. All algorithms use BB step-size initialization.

IV. EXAMPLES

We next illustrate the utility of our approach using two
examples. We compare our method of multipliers algorithm
with the ADMM algorithm from [2] and a direct application
of the proximal gradient method.

A. Mass-spring system

Consider a series of N masses connected by linear springs.
The dynamics of each mass are described by

p̈i = −(pi − pi+1) − (pi − pi−1) + di + ui

where pi is the position of the ith mass. When the first
and last masses are affixed to rigid bodies, the aggregate
dynamics are given by[

ṗ
v̇

]
=

[
0 I
−T 0

] [
p
v

]
+

[
0
I

]
d +

[
0
I

]
u

where p, v, and d are the position, velocity and disturbance
vectors, and T is a Toeplitz matrix with 2 on the main
diagonal and −1 on the first super- and sub-diagonals.

In Figure 2, we compare the time required to compute a
series of sparse feedback gains for 10 values of γ, linearly
spaced between 0.001 and 1.0. Taking γ = 1.0 corresponds
to roughly 6% nonzero elements in the feedback gain matrix.

Among the three algorithms, ADMM is the fastest; how-
ever, the method of multipliers is comparable and scales at
the same rate. Direct proximal gradient was the slowest and
exhibited the worst scaling. Since the mass-spring system
has benign dynamics, we next consider an unstable network.

B. Unstable network

Let N nodes be uniformly randomly distributed in a box.
Each node is an unstable second order system coupled with
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Fig. 3. Computation time required to solve (SP) for 20 evenly spaced
values of γ from 0.001 to 0.05 for unstable network examples with N =
5, 10, 20, 30, 40, 50 nodes. Performance of direct proximal gradient (green
dashed �), the method of multipliers (blue solid ×) and ADMM (red dash-
dot �) is displayed. All algorithms use BB step-size initialization.

nearby nodes via an exponentially decaying function of the
Euclidean distance δ(i, j) between them [24],[

ẋ1i
ẋ2i

]
=

[
1 1
1 2

] [
x1i
x2i

]
+
∑
j 6= i

e−δ(i,j)
[
x1j
x2j

]
+

[
0
1

]
(di + ui)

where Q and R are taken to be the identity. Note that
simple truncation of the centralized controller could result in
a non-stabilizing feedback matrix [24]. We solve (SP1) for γ
varying from 0.001 to 0.05 in 20 linearly spaced increments.
On average, γ = 0.05 corresponds to approximately 25%
nonzero entries in the feedback gain matrix.

Computation times for N varying from 5 to 50, are shown
in Figure 3. Since networks are randomly generated, we
average the computation time for 5 networks of each size. For
this more complicated example, the method of multipliers
algorithm is the fastest and ADMM is the slowest.

V. CONCLUDING REMARKS

We have developed a customized algorithm for a sparsity-
promoting optimal control problem. Our approach combines
the method of multipliers with proximal algorithms. We have
provided a comparison with the ADMM algorithm [2] and a
direct proximal gradient method. Our algorithm consistently
outperforms direct proximal gradient, is competitive with
ADMM for a simple example and faster than ADMM for
a more complicated example. Our method of multipliers
algorithm is appealing because it both provides a guarantee
of convergence and performs well in practice.

Our ongoing effort focuses on developing accelerated
proximal gradient methods [18] for minimizing the aug-
mented Lagrangian in (7a). We are also exploring the utility
of the method of multipliers for other classes of regularized

optimal control problems including sensor/actuator selection
and topology identification in dynamic networks.
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