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Abstract— We consider the problem of the optimal selection
of a subset of available sensors or actuators in large-scale
dynamical systems. By replacing a combinatorial penalty on
the number of sensors or actuators with a convex sparsity-
promoting term, we cast this problem as a semidefinite pro-
gram. The solution of the resulting convex optimization problem
is used to select sensors (actuators) in order to gracefully
degrade performance relative to the optimal Kalman filter
(Linear Quadratic Regulator) that uses all available sensing
(actuating) capabilities. We employ the alternating direction
method of multipliers to develop a customized algorithm that
is well-suited for large-scale problems. Our algorithm scales
better than standard SDP solvers with respect to both the state
dimension and the number of available sensors or actuators.

Index Terms— Actuator and sensor selection, alternating di-
rection method of multipliers, convex optimization, semidefinite
programming, sparsity-promoting estimation and control.

I. INTRODUCTION

In traditional applications, controller or observer design
deals with the problem of how to use a pre-specified config-
uration of sensors and actuators in order to attain the desired
objective. In general, the best performance is achieved by
using all of the available sensors or actuators. However, this
option may be computationally or economically infeasible.
We thus consider the problem of selecting a subset of
available sensors or actuators in order to gracefully degrade
performance relative to the setup where all of them are used.

Typically, sensor/actuator selection and placement is per-
formed by a designer with expert knowledge of the system.
However, in large-scale applications and systems with com-
plex interactions, it can be difficult to do this effectively.
For linear time-invariant dynamical systems, we develop
a framework and an efficient algorithm to systematically
choose sensors and actuators via convex optimization.

Our starting point is a formulation with an abundance
of potential sensors or actuators. This setup can encode
information about different types or different placements of
sensing and actuating capabilities. We consider the problem
of selecting subsets of available options from this full model.
Applications of this formulation range from placement of
Phasor Measurement Units (PMUs) in power systems, to
placement of sensors and actuators along an aircraft wing, to
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the distribution of GPS units in a formation of multi-vehicle
systems.

The problem of interest is a difficult combinatorial opti-
mization problem. Although there is a wide body of previous
work in this area, most of the available literature either uses
heuristic methods or does not consider dynamical models. In
[1], the authors provide a convex sensor selection formulation
for a problem with linear measurements. The authors of [2]
select sparse subsets of sensors to minimize the Cramer-
Rao bound of a class of nonlinear measurement models.
The placement of PMUs in power systems was formulated
as a variation of the optimal experiment design in [3].
Actuator selection via genetic algorithms was explored in [4].
A non-convex formulation of the joint sensor and actuator
placement was provided in [5], [6] and it was recently applied
to the linearized Ginzburg-Landau equation [7]. The leader
selection problem in consensus networks can be seen as
a type of a structured joint actuator and sensor selection
problem which admits a convex relaxation [8] and even an
analytical solution for one or two leaders [9]. However, this
formulation does not extend naturally to broader classes of
problems.

The sparsity-promoting framework introduced in [10]–
[12] can be used to obtain block-sparse structured feedback
and observer gains and select actuators or sensors. Indeed,
algorithms developed in [12] have been used in [13] for
the sensor selection in a target tracking problem. However,
these algorithms have been developed for general structured
control/estimation problems and they do not exploit the
hidden convexity of the actuator/sensor selection problem.

In [14], the authors introduced a convex semidefinite pro-
gramming (SDP) characterization of the problem formulation
considered in [12] for enhancing certain forms of sparsity in
the feedback gain. Although sensor and actuator selection
falls into the class of problems considered by [14], generic
SDP solvers cannot handle large-scale applications. Since
we are interested in high-dimensional systems with many
sensors/actuators, we use the alternating direction method of
multipliers (ADMM) [15] to develop a customized solver that
is well-suited for large problems. In contrast to standard SDP
solvers, whose computational complexity scales unfavorably
with the number of states/sensors/actuators, the worst case
per-iteration complexity of our method scales only with the
number of states. Furthermore, our algorithm performs much
better than standard SDP solvers in numerical experiments.

The rest of the paper is organized as follows. In Section
II, we state the actuator and sensor selection problems
and introduce their convex formulations. In Section III,
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we develop a customized ADMM algorithm for actuator
selection. In Section IV, we provide an example to illustrate
the utility of our algorithm and in Section V we summarize
our developments.

II. PROBLEM FORMULATION

A. Actuator selection

Consider the standard state-space system,

ẋ = Ax + B1 d + B2 u

z =

[
Q1/2

0

]
x +

[
0

R1/2

]
u

where d is a zero-mean white stochastic process with covari-
ance Vd and the pair (A,B2) is controllable. The optimal H2

controller minimizes the steady-state variance,

lim
t→∞

E
(
xT (t)Qx(t) + uT (t)Ru(t)

)
where E is the expectation operator, Q = QT � 0 specifies
a weight on the system states, and R = RT � 0 specifies the
penalty on the control input. The global optimal controller for
this problem is a state feedback law of the form u = −Kx.
Although this controller is readily computed by solving the
corresponding algebraic Riccati equation, it typically uses all
input channels and thus all available actuators.

We are interested in designing an optimal controller which
uses a subset of the available actuators. This will be accom-
plished by augmenting theH2 performance index with a term
that promotes row-sparsity of the feedback gain matrix K.
The resulting problem can be cast as a semidefinite program
and thus solved efficiently for small problems.

1) SDP Formulation: Under the state feedback control
law, u = −Kx, the closed-loop system is given by

ẋ = (A − B2K)x + B1 d

z =

[
Q1/2

−R1/2K

]
x.

(1)

The H2 norm of system (1) is determined by

J(K) = trace
(
QX + KTRKX

)
where X = XT � 0 is the controllability gramian of the
closed loop system,

(A − B2K)X + X (A − B2K)T + B1 VdB
T
1 = 0.

Since X is positive definite and therefore invertible, the
standard change of coordinates Y := KX can be used to
express J(K) in terms of X and Y [16],

J(X,Y ) = trace
(
QX + X−1 Y TRY

)
and to bring the optimal H2 problem into the following form

minimize
X,Y

J(X,Y )

subject to AX +XAT −B2Y − Y TBT2 + V = 0

X � 0
(2)

with V := B1VdB
T
1 . By taking the Schur complement of

X−1Y TRY this problem can be expressed as an SDP [16].
Finally, the optimal feedback gain can be recovered by K =
Y X−1. In what follows, we use this SDP characterization
to introduce the actuator selection problem.

2) Sparsity Structure: When the ith row of K is iden-
tically equal to zero, the ith control input is not used.
Therefore, obtaining a control law which uses only a subset
of available actuators can be achieved by promoting row-
sparsity of K. Our developments are facilitated by the
equivalence between the row-sparsity of K and Y ; the ith
row of K is equal to zero if and only if the ith row of
Y = KX is equal to zero [14].

Drawing on the group-sparsity paradigm [17], we aug-
ment (2) with a sparsity-promoting penalty on the rows of
Y ,

minimize J(X,Y ) + γ

m∑
i= 1

wi ‖eTi Y ‖2

subject to AX +XAT −B2Y − Y TBT2 + V = 0

X � 0.

(3)

The parameter γ > 0 specifies the importance of sparsity
relative to H2 performance, wi are nonzero weights, and ei
is the ith unit vector in Rm.

This problem can still be cast as an SDP and standard
solvers can be used to find its solution. However, since
generic SDP solvers do not exploit the structure of (3), they
do not scale gracefully with problem dimension.

B. Sensor selection

The sensor selection problem can be approached in a
similar manner. Consider a linear time-invariant system,

ẋ = As x + B1 d

y = C x + η

where d and η are zero-mean white stochastic processes
with covariances Vd and Vη , respectively, and (As, C) is an
observable pair. The observer,

˙̂x = As x̂ + L (y − ŷ)

= As x̂ + LC (x − x̂) + Lη

estimates the state x from the noisy measurements y using
a linear injection term with an observer gain L. For the
Hurwitz matrix As − LC, the zero-mean estimate of x
is given by x̂ and the dynamics of the estimation error
x̃ := x− x̂ are governed by

˙̃x = (As − LC) x̃ + B1 d − Lη. (4)

The variance amplification from the noise sources d and η
to the estimation error x̃ is determined by

Jo(L) = trace (XoB1 VdB
T
1 + Xo LVη L

T ) (5)

where Xo is the observability gramian of the error system (4),

(As − LC)T Xo + Xo (As − LC) + I = 0.
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The Kalman filter gain L, resulting from the observer Riccati
equation, provides an optimal observer with the smallest
variance amplification.

Our objective is to design a Kalman filter which uses a
subset of the available sensors. This can be achieved by
enhancing column-sparsity of the observer gain L. Since the
change of coordinates Z := XoL preserves column sparsity
of L, we formulate the sensor selection problem as

minimize
Xo, Z

Jo(Xo, Z) + γ

r∑
i= 1

wi ‖Z ei‖2

subject to ATs Xo +XoAs − CTZT − ZC + I = 0

Xo � 0
(6)

where

Jo(Xo, Z) = trace
(
XoB1 VdB

T
1 + X−1

o Z Vη Z
T
)
.

We note that the sensor selection problem (6) can be
obtained from the actuator selection problem (3) by setting
the problem data in (3) to

A = ATs , B2 = CT , Q = B1 VdB
T
1

V = I, R = Vη
(7)

and recovering the variables Xo = X and Z = Y T .

III. CUSTOMIZED ALGORITHM

We next develop an efficient algorithm for solving the
actuator selection problem (3); the solution to the sensor
selection problem (6) can be obtained by mapping it to (3)
via (7). The challenges in solving the optimization prob-
lem (3) arise from
• the positive definite constraint;
• the linear Lyapunov-like constraint;
• the non-smoothness of the sparsity-promoting term.

To ensure positive definiteness of X , we use projected
descent techniques to optimize over the positive definite
cone. We dualize the linear constraint and split (3) into
two simpler subproblems over X and Y via the alternating
direction method of multipliers (ADMM). This splitting
separates the objective function component associated with
the positive definite constraint (the subproblem over X) from
the non-differentiable component (the subproblem over Y ).
Since the subproblem over Y is efficiently solvable, our
method scales well with the number of sensors or actuators.

We employ a projected version of Newton’s method to
solve the X-subproblem. The Newton search direction is ob-
tained via a conjugate gradient algorithm. The Y -subproblem
is solved with a proximal method.

A. Alternating direction method of multipliers

To employ ADMM, we first form the augmented La-
grangian corresponding to the optimization problem (3),

Lρ(X,Y,Λ) := J(X,Y ) + γ g(Y ) + 〈Λ, h(X,Y )〉 +

(ρ/2) ‖h(X,Y )‖2F

where 〈·, ·〉 denotes the standard inner product between two
matrices, h(X,Y ) is the linear Lyapunov-like constraint

h(X,Y ) := AX + XAT − B2Y − Y TBT2 + V

and g(Y ) denotes the sparsity-promoting term,

g(Y ) :=

m∑
i= 1

wi ‖eTi Y ‖2.

Relative to the standard Lagrangian, Lρ contains an ad-
ditional quadratic penalty on the violation of the Lyapunov
constraint. The positive parameter ρ specifies how close X
and Y are to satisfying this linear constraint at each iteration.

The ADMM iteration uses the update sequence [15]

Xk+1 = arg min
X

Lρ(X, Yk, Λk)

Yk+1 = arg min
Y

Lρ(Xk+1, Y, Λk)

Λk+1 = Λk + ρ h(Xk+1, Yk+1)

to find the optimal solution to the original problem. The
stopping criteria depend on the primal residual, which quan-
tifies how well Xk and Yk satisfy the linear constraint, and
the dual residual, which quantifies the difference between Yk
and Yk−1. We refer the reader to [15] for details.

B. X-minimization step

The X-minimization step is equivalent to solving,

minimize
X

J(X,Yk) +
ρ

2
‖h(X,Yk) +

1

ρ
Λk‖2F

subject to X � 0.
(8)

We use a projected version of Newton’s method to solve a
sequence of quadratic approximations to (8).

1) Newton’s method: At each iteration, Newton’s method
does a line search from X̄ in the direction ∆n which
minimizes the quadratic approximation of (8),

∆n := arg min
∆

1

2
〈HX̄(∆),∆〉 +

〈
G(X̄),∆

〉
(9)

where G(X̄) is the gradient of Lρ with respect to X evalu-
ated at X̄ , and HX̄(∆) is a linear function of ∆ that contains
information about the Hessian of Lρ; see equations (12) and
(13) in the appendix. Solving the linear equation

HX̄(∆) + G(X̄) = 0

yields the Newton direction ∆n which is computed using the
conjugate gradient method [18].

2) Projection: The set C approximates the positive defi-
nite cone X � 0 with X � εI . Once the Newton direction
is determined, the step

X = PC
(
X̄ +

1

β
∆n

)
is taken, where PC is the projection on the set C and the step
size 1/β is chosen using an Armijo backtracking search.

To project the symmetric matrix M onto C, its eigenvalues
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are projected onto the set λi ≥ ε. From the eigenvalue
decomposition M = U diag(λ)UT , where λ is a vector of
the eigenvalues and U is a matrix of the corresponding eigen-
vectors, the projection is PC(M) = U diag (max (λ, ε))UT .

While Netwon’s method reduces the number of required
steps, computing the search directions can be prohibitively
expensive for large-scale systems. To deal with this issue, we
are currently exploring efficient implementation of projected
gradient descent methods, quasi-Newton methods, and the
use of log-barrier functions. Furthermore, in practice it is
not necessary to solve the X-minimization step exactly and
we can terminate after a few Newton or gradient steps [15].

C. Y -minimization step

The Y -minimization step is equivalent to solving,

minimize
Y

γ g(Y ) + trace (X−1
k+1Y

TRY ) +

(ρ/2) ‖h(Xk+1, Y ) + (1/ρ) Λk‖2F .
(10)

The objective function is the sum of a quadratic term and
a separable sum of `2 norms: a problem form commonly
referred to as group LASSO. This problem has been ex-
tensively studied in recent years and there are a variety of
techniques for computing its solution. We employ an effi-
cient proximal method known as Iterative Soft-Thresholding
(ISTA) [19]. At each point Ȳ , the smooth part of the
objective function is linearized and a proximal term is added,

minimize
Y

γ g(Y ) +
〈
F (Ȳ ), Y

〉
+

β

2
‖Y − Ȳ ‖2F

where, F (Ȳ ) is the gradient of the smooth part of (10)
evaluated at Ȳ ; see equation (14) in the appendix. This
approximation has an analytic minimizer; the update of the
ith row of the matrix Y is given by

eTi Y = Sα
(

eTi Ȳ −
1

β
eTi F (Ȳ )

)
where α := γwi/β and S is the block shrinkage operator
which acts on each row of Y as

Sα(eTi Y ) =

{ (
1 − α/‖eTi Y ‖2

)
eTi Y, ‖eTi Y ‖2 > α

0, ‖eTi Y ‖2 ≤ α.

D. Iterative reweighting

Inspired by [20], we employ an iterative reweighing
scheme to select the weights wi in the sparsity-promoting
term

∑
i wi‖ai‖2 to obtain sparser structures at lower values

of γ. The authors in [20] noted that if wi = 1/‖ai‖2, then
there is an exact correspondence between the weighted `1
norm and the cardinality function. However, implementing
such weights requires a priori knowledge of the values ‖ai‖2
at the optimal a. Consequently, we implement a reweighting
scheme in which we run the algorithm multiple times for
each value of γ and update the weights as,

wj+1
i =

1

‖ eTi Y ‖2 + ε
(11)

where ε > 0 ensures that the update is always well-defined.

IV. AN EXAMPLE

We use a simple mass-spring system to illustrate the utility
of our algorithm in the sensor selection problem. This system
has a clear intuitive interpretation and its dimension can be
easily scaled while retaining the problem structure. Consider
a series of masses connected by linear springs. With unit
masses, unit spring constants and no friction, the dynamics
of each mass are described by

p̈i = −(pi − pi+1) − (pi − pi−1) + di

where pi is the position of the ith mass. When the first
and last masses are affixed to rigid bodies, the aggregate
dynamics are given by[

ṗ
v̇

]
=

[
0 I
−T 0

] [
p
v

]
+

[
0
I

]
d

where p, v, and d are the position, velocity and disturbance
vectors, and T is a Toeplitz matrix with 2 on the main
diagonal and −1 on the first super- and sub-diagonals. The
possible sensor outputs are the position and velocity vectors.

A. Algorithm speed and computational complexity

The complexity of solving the sensor selection SDP
with interior point methods is O((n + r)6), where n is
the dimension of the state-space and r is the number of
sensors. In our algorithm, the greatest cost is incurred by
computing the Newton direction in the X-minimization step.
Since X ∈ Rn×n, the worst case complexity of computing
Newton direction is O(n6). This is because each conjugate
gradient step takes O(n3) operations and, in general, n2

conjugate gradient steps are required to obtain convergence.
In well-conditioned problems, the conjugate gradient method
achieves high accuracy much faster which significantly re-
duces computational complexity. The Y -minimization step
has a computational cost of only O(nr), so the overall cost
per ADMM iteration is O(n6) unless r ≥ n5.

Figure 1 shows the time required by ADMM and by
CVX [21], [22] to solve (6) with γ = 100 for mass-spring
systems of increasing sizes. Our algorithm scales favorably
here and it scales much better when only the number of
sensors is varied. Figure 2 shows scaling with just the number
of outputs. As the number of sensors increases, CVX’s
computation time increases while the computation time of
ADMM barely changes.

B. Sensor selection

We consider a system with 20 masses (40 states) and
potential position and velocity measurements for each mass.
As γ increases, sparser observer structures are uncovered at
the cost of compromising quality of estimation. The tradeoff
between the number of sensors and the variance of the
estimation error is shown in Figure 3.

Figures 4 and 5 show the position and velocity sensor
topologies identified by the ADMM algorithm as γ is in-
creased. To save space, only novel topologies are shown.
The selected sensor configurations have symmetric topology,
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Fig. 1. Scaling of computation time with the number of states for CVX
and for ADMM for mass-spring system with γ = 100 and position and
velocity outputs. Empirically, we observe that CVX scales roughly with n6

while ADMM scales roughly with n3.

Fig. 2. Scaling of computation time with the number of sensors for CVX
and for ADMM for mass-spring system with γ = 100 and n = 50. Outputs
are random linear combinations of the states.

which is expected for this example. Notably, velocity mea-
surements are, in general, more important but the locations
of the most important position and velocity sensors differ.

C. Iterative reweighting

Figure 6 illustrates the utility of iterative reweighting.
When constant sparsity-promoting weights are used, large
values of γ are required to identify sparse structures. Here,
we run our ADMM algorithm 3 times for each value of γ,
updating the weights using (11) and retaining them as we
increase γ.

V. CONCLUDING REMARKS

We have provided a convex characterization of sensor and
actuator selection problems in linear time-invariant dynami-
cal systems. An efficient customized ADMM algorithm that
relies on iterative reweighting has been developed. The speed

Fig. 3. Percent increase in J(L) in terms of the number of sensors.

Fig. 4. Retained position sensors as γ increases. A blue dot indicates
that the position of the corresponding mass is being measured. The top row
shows the densest sensor topology, and the bottom row shows the sparsest.

Fig. 5. Retained velocity sensors as γ increases. A blue dot indicates
that the velocity of the corresponding mass is being measured. The top row
shows the densest sensor topology, and the bottom row shows the sparsest.
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Fig. 6. Number of sensors versus γ for a scheme which uses iterative
reweighting and for the scheme which uses constant weights. Iterative
reweighting promotes sparser structures earlier.

and utility of our algorithm have been demonstrated using a
mass-spring example.

The most expensive step of our algorithm involves com-
putation of Newton direction via the conjugate gradient
method. In order to improve computational complexity, we
are currently exploring the development of projected gradient
and quasi-Newton methods.
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APPENDIX

A. X-minimization

The gradient of Lρ with respect to X is given by

G(X) := Q − X−1Y TRYX−1 + A
(
Λ + ρ h(X,Y )

)
+
(
Λ + ρ h(X,Y )

)
AT .

(12)
The quadratic term used in (9) is,

1

2
vec(∆)T (∇2Lρ) vec(∆)

where ∇2Lρ is the Hessian. This can be more conveniently
expressed as, (1/2) 〈H(∆),∆〉 where,

HX(∆) := H1,X(∆) + ρH2(∆). (13)

The first term in (13) comes from the performance index,

H1,X(∆) := G1,X ∆X−1 + X−1 ∆G1,X

G1,X := X−1Y TRYX−1

and the second term comes from the constraint penalties,

H2(∆) := ATA∆ + ∆ATA + A∆A + AT∆AT .

B. Y -minimization

The smooth part of the objective function in (10) is
everything but g(Y ). Its gradient with respect to Y is

F (Y ) := 2RYX−1 + 2ρ
(
BT2 Y

TBT2 +BT2 B2Y
)

− 2BT2
(
Λ + ρ(AX +XAT + V )

)
.

(14)
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