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The Proximal Augmented Lagrangian Method for
Nonsmooth Composite Optimization

Neil K. Dhingra , Sei Zhen Khong , and Mihailo R. Jovanović

Abstract—We study a class of optimization problems in which the
objective function is given by the sum of a differentiable but possi-
bly nonconvex component and a nondifferentiable convex regular-
ization term. We introduce an auxiliary variable to separate the ob-
jective function components and utilize the Moreau envelope of the
regularization term to derive the proximal augmented Lagrangian—
a continuously differentiable function obtained by constraining the
augmented Lagrangian to the manifold that corresponds to the ex-
plicit minimization over the variable in the nonsmooth term. The
continuous differentiability of this function with respect to both
primal and dual variables allows us to leverage the method of mul-
tipliers (MM) to compute optimal primal-dual pairs by solving a
sequence of differentiable problems. The MM algorithm is applica-
ble to a broader class of problems than proximal gradient methods
and it has stronger convergence guarantees and a more refined
step-size update rules than the alternating direction method of
multipliers (ADMM). These features make it an attractive option for
solving structured optimal control problems. We also develop an al-
gorithm based on the primal-descent dual-ascent gradient method
and prove global (exponential) asymptotic stability when the differ-
entiable component of the objective function is (strongly) convex
and the regularization term is convex. Finally, we identify classes
of problems for which the primal-dual gradient flow dynamics are
convenient for distributed implementation and compare/contrast
our framework to the existing approaches.

Index Terms—Augmented Lagrangian, control for optimization,
global exponential stability, method of multipliers, non-smooth
optimization, primal-dual dynamics, proximal algorithms, proxi-
mal augmented Lagrangian, regularization for design, structured
optimal control.

I. INTRODUCTION

We study a class of composite optimization problems in which the
objective function is the sum of a differentiable but possibly a noncon-
vex component and a convex nondifferentiable component. Problems
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of this form are encountered in diverse fields including compressive
sensing [1], statistics [2], and control [3]. In feedback synthesis, they
typically arise when a traditional performance metric (such as the H2
or H∞ norm) is augmented with a regularization function to promote
certain structural properties in the optimal controller. For example, the
�1 norm and the nuclear norm are commonly used nonsmooth con-
vex regularizers that encourage sparse and low-rank optimal solutions,
respectively.

The lack of a differentiable objective function precludes the use of
standard descent methods for smooth optimization. Proximal gradient
methods [4] and their accelerated variants [5] generalize gradient de-
scent, but typically require the nonsmooth term to be separable over the
optimization variable. An alternative approach is to split the smooth
and nonsmooth components in the objective function over separate
variables that are coupled via an equality constraint. Such a reformula-
tion facilitates the use of the alternating direction method of multipliers
(ADMM) [6]. This augmented-Lagrangian-based method splits the op-
timization problem into subproblems that are either smooth or easy to
solve. It also allows for a broader class of regularizers than the proximal
gradient and it is convenient for distributed implementation. However,
there are limited convergence guarantees for nonconvex problems and
parameter tuning greatly affects its convergence rate.

The method of multipliers (MM) is the most widely used algorithm
for solving constrained nonlinear programming problems [7]–[9]. In
contrast to ADMM, it is guaranteed to converge for nonconvex prob-
lems and there are systematic ways to adjust algorithmic parameters.
However, MM is not a splitting method and it requires joint minimiza-
tion of the augmented Lagrangian with respect to all primal optimiza-
tion variables. This subproblem is typically nonsmooth and as difficult
to solve as the original optimization problem.

To make this difficult subproblem tractable, we transform the aug-
mented Lagrangian into the continuously differentiable proximal aug-
mented Lagrangian by exploiting the structure of proximal operators
associated with nonsmooth regularizers. This new form is obtained
by constraining the augmented Lagrangian to the manifold that corre-
sponds to the explicit minimization over the variable in the nonsmooth
term. The resulting expression is given in terms of the Moreau enve-
lope of the nonsmooth regularizer and is continuously differentiable.
This allows us to take advantage of standard optimization tools, in-
cluding gradient descent and quasi-Newton methods, and enjoy the
convergence guarantees of the standard MM.

The proximal augmented Lagrangian also enables Arrow–Hurwicz–
Uzawa primal-dual gradient flow dynamics. Such dynamics can be used
to identify saddle points of the Lagrangian [11] and have enjoyed recent
renewed interest in the context of networked optimization because, in
many cases, the gradient can be computed in a distributed manner [12].
Our approach yields a dynamical system with a continuous right-hand
side for a broad class of nonsmooth optimization problems. This is in
contrast to existing techniques that employ subgradient methods [13]
or use discontinuous projected dynamics [14]–[16] to handle inequal-
ity constraints. Furthermore, since the proximal augmented Lagrangian
is not strictly convex–concave, we make additional developments rel-
ative to [17] to show asymptotic convergence. Finally, inspired by
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recent advances [18], [19], we employ the theory of integral quadratic
constraints (IQCs) [20] to prove global exponential stability when the
differentiable component of the objective function is strongly convex
with a Lipschitz continuous gradient.

The rest of this paper is structured as follows. In Section II, we for-
mulate the nonsmooth composite optimization problem and provide a
brief background on proximal operators. In Section III, we exploit the
structure of proximal operators to introduce the proximal augmented
Lagrangian and provide an efficient algorithmic implementation of
MM. In Section IV, we prove global (exponential) asymptotic stability
of primal-descent dual-ascent gradient flow dynamics under a (strong)
convexity assumption. In Section V, we use the problems of edge addi-
tion in directed consensus networks and optimal placement to illustrate
the effectiveness of our approach. We close this paper in Section VI
with concluding remarks.

II. PROBLEM FORMULATION AND BACKGROUND

We consider a composite optimization problem

minimize
x

f (x) + g (T (x)) (1)

where the optimization variable x belongs to a finite-dimensional
Hilbert space (e.g., Rn or Rm×n ) equipped with an inner product 〈·, ·〉
and associated norm ‖ · ‖. The function f is continuously differentiable
but possibly nonconvex, the function g is convex but potentially non-
differentiable, and T is a bounded linear operator. We further assume
that g is proper and lower semicontinuous, that (1) is feasible, and that
its minimum is finite.

Problem (1) is often encountered in structured controller design [21]–
[23], where f is a measure of the closed-loop performance, e.g., the H2
norm, and the regularization term g is introduced to promote certain
structural properties of T (x). For example, in wide-area control of
power systems, f measures the quality of synchronization between
different generators and g penalizes the amount of communication
between them [24]–[26].

In particular, for z := T (x) ∈ Rm , the �1 norm, ‖z‖1 :=
∑

|zi |,
is a commonly used convex proxy for promoting sparsity of z. For
z ∈ Rm×n , the nuclear norm, ‖z‖∗ :=

∑
σi (z), can be used to obtain

low-rank solutions to (1), where σi (z) is the ith singular value. The
indicator function, IC(z) := {0, z ∈ C; ∞, z �∈ C} associated with the
convex set C is the proper regularizer for enforcing z ∈ C.

Regularization of T (x) instead of x is important in the situa-
tion where the desired structure has a simple characterization in the
codomain of T . For example, such problems arise in spatially invariant
systems, where it is convenient to perform standard control design in
the spatial frequency domain [27] but necessary to promote structure in
the physical space, and in consensus/synchronization networks, where
the objective function is expressed in terms of the deviation of node
values from the network average but it is desired to impose structure
on the network edge weights [22], [23].

A. Background on Proximal Operators

Problem (1) is difficult to solve directly because f is, in general, a
nonconvex function and g is typically not differentiable. Since existing
approaches and our method utilize proximal operators, we first provide
a brief overview; for additional information, see [4].

The proximal operator of the function g is given by

proxμg (v) := argmin
x

(
g(x) + 1

2μ ‖x− v‖2
)

(2a)

and the associated optimal value specifies its Moreau envelope

Mμg (v) := g(proxμg (v)) + 1
2μ ‖proxμg (v) − v‖2 (2b)

where μ > 0. The Moreau envelope is a continuously differentiable
function, even when g is not, and its gradient [4] is given by

∇Mμg (v) = 1
μ

(
v − proxμg (v)

)
. (2c)

For example, when g is the �1 norm, g(z) = ‖z‖1 =
∑

|zi |, the
proximal operator is determined by soft thresholding, proxμg (vi ) =
Sμ (vi ) := sign(vi ) max (|vi | − μ, 0), the associated Moreau en-
velope is the Huber function, Mμg (vi ) = { 1

2μ v
2
i , |vi | ≤ μ; |vi | −

μ
2 , |vi | ≥ μ}, and the gradient of this Moreau envelope is the satu-
ration function, ∇Mμg (vi ) = sign(vi ) min (|vi |/μ, 1).

B. Existing Algorithms

1) Proximal Gradient: The proximal gradient method general-
izes standard gradient descent to certain classes of nonsmooth opti-
mization problems. When T = I , the proximal gradient method for
problem (1) with step size αl is given by xl+1 = proxα l g (x

l −
αl∇f (xl )). When g = 0, the proximal gradient method simplifies to
standard gradient descent, and when g is indicator function of a convex
set, it simplifies to projected gradient descent. The proximal gradient
algorithm applied to the �1 -regularized least-squares problem (LASSO)

minimize
x

1
2 ‖Ax − b‖2 + γ ‖x‖1 (3)

where γ is a positive regularization parameter, yields the iterative soft-
thresholding algorithm (ISTA) [5], xl+1 = Sγ α l (xl − αlA

T (Axl −
b)). This method is effective only when the proximal operator of g(T )
is easy to evaluate. Except in special cases, e.g., when T is diagonal,
efficient computation of proxμg (T ) does not necessarily follow from
an efficiently computable proxμg . This makes the use of the proximal
gradient method challenging for many applications and its convergence
can be slow. Acceleration techniques improve the convergence rate [5],
[28], but they do not perform well in the face of constraints such as
closed-loop stability.

2) Augmented Lagrangian Methods: A common approach
for dealing with a nondiagonal linear operator T in (1) is to introduce
an additional optimization variable z as

minimize
x,z

f (x) + g(z)

subject to T (x) − z = 0.
(4)

The augmented Lagrangian is obtained by adding a quadratic penalty
on the violation of the linear constraint to the regular Lagrangian asso-
ciated with (4) as

Lμ (x, z; y) = f (x) + g(z) + 〈y, T (x) − z〉 + 1
2μ ‖T (x) − z‖2

where y is the Lagrange multiplier and μ is a positive parameter.
ADMM solves (4) via an iteration that involves minimization of

Lμ (x, z; y) separately over x and z and a gradient ascent update (with
step-size 1/μ) of y [6]

xk+1 = argmin
x

Lμ (x, zk ; yk ) (5a)

zk+1 = argmin
z

Lμ (xk+1 , z; yk ) (5b)

yk+1 = yk + 1
μ

(T (xk+1 ) − zk+1 ). (5c)

ADMM is appealing because, even when T is nondiagonal, the
z-minimization step amounts to evaluating proxμg , and the x-
minimization step amounts to solving a smooth (but possibly non-
convex) optimization problem. Although it was recently shown that
ADMM is guaranteed to converge to a stationary point of (4) for some
classes of nonconvex problems [29], its rate of convergence is strongly
influenced by the choice of μ.

MM is the most widely used algorithm for solving constrained non-
convex optimization problems [7], [30] and it guarantees convergence
to a local minimum. In contrast to ADMM, each MM iteration requires
joint minimization of the augmented Lagrangian with respect to the
primal variables x and z as

(xk+1 , zk+1 ) = argmin
x, z

Lμ (x, z; yk ) (6a)

yk+1 = yk + 1
μ

(T (xk+1 ) − zk+1 ). (6b)
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It is possible to refine MM to allow for inexact solutions to the (x, z)-
minimization subproblem and adaptive updates of the penalty pa-
rameter μ. However, until now, MM has not been a feasible choice
for solving (4) because the nonconvex and nondifferentiable (x, z)-
minimization subproblem is as difficult as the original problem (1).

III. PROXIMAL AUGMENTED LAGRANGIAN

We next derive the proximal augmented Lagrangian, a continuously
differentiable function resulting from explicit minimization of the aug-
mented Lagrangian over the auxiliary variable z. This brings the (x, z)-
minimization problem (6a) into a form that is continuously differen-
tiable with respect to both x and y and facilitates the use of a wide
suite of standard optimization tools for solving (1). In particular, as
described below, our approach enables MM and the Arrow–Hurwicz–
Uzawa gradient flow dynamics method.

A. Derivation of the Proximal Augmented Lagrangian

The first main result of this paper is provided in Theorem 1. We use
the proximal operator of the function g to eliminate the auxiliary opti-
mization variable z from the augmented Lagrangian and transform (6a)
into a tractable continuously differentiable problem.

Theorem 1: For a proper, lower semicontinuous, and convex func-
tion function g, minimization of the augmented LagrangianLμ (x, z; y)
associated with problem (4) over (x, z) is equivalent to minimization
of the proximal augmented Lagrangian

Lμ (x; y) := f (x) +Mμg (T (x) + μy) − μ
2 ‖y‖2 (7)

overx. Moreover, if f is continuously differentiable,Lμ (x; y) is contin-
uously differentiable over x and y, and if f has a Lipschitz continuous
gradient, ∇Lμ (x; y) is Lipschitz continuous.

Proof: Through the completion of squares, the augmented La-
grangian Lμ associated with (4) can be equivalently written as

Lμ (x, z; y) = f (x) + g(z) + 1
2μ ‖z − (T (x) + μy)‖2 − μ

2 ‖y‖2 .

Minimization with respect to z yields an explicit expression

z�μ (x, y) = proxμg (T (x) + μy) (8)

and substitution of z�μ into the augmented Lagrangian provides (7),
i.e., Lμ (x; y) = Lμ (x, z�μ (x, y); y). Continuous differentiability of
Lμ (x; y) follows from continuous differentiability of Mμg and Lip-
schitz continuity of ∇Lμ (x; y) follows from Lipschitz continuity of
proxμg and boundedness of the linear operator T ; see (2c). �

Expression (7), that we refer to as the proximal augmented La-
grangian, characterizes Lμ (x, z; y) on the manifold corresponding to
explicit minimization over the auxiliary variable z. Theorem 1 allows
joint minimization of the augmented Lagrangian with respect to x and
z, which is in general a nondifferentiable problem, to be achieved by
minimizing differentiable function (7) over x. It thus facilitates the use
of MM in Section III-B and the Arrow–Hurwicz–Uzawa gradient flow
dynamics in Section IV.

Remark 1: The proximal augmented Lagrangian can be derived
even in the presence of a more general linear constraint

minimize
x 1 , x 2

f (x1 ) + g(x2 )

subject to T1 (x1 ) + T2 (x2 ) = 0.
(9a)

The introduction of an additional auxiliary variable z can be used to
recast problem (9a) as

minimize
x 1 , x 2 , z

f (x1 ) + g(z)

subject to T1 (x1 ) + T2 (x2 ) = 0, x2 − z = 0.
(9b)

Via an analogous procedure to that described in Theorem 1, explicit
minimization with respect to z can be employed to eliminate it from

the augmented Lagrangian and obtain a continuously differentiable
function of both primal (x1 , x2 ) and dual (y1 , y2 ) variables

Lμ (x1 , x2 ; y1 , y2 ) = f (x1 ) + 1
2μ ‖T1 (x1 ) + T2 (x2 ) + μy1‖2

+Mμg (x2 + μy2 ) − μ
2 ‖y1‖2 − μ

2 ‖y2‖2 .

Here, y1 and y2 are the Lagrange multipliers associated with the respec-
tive linear constraints in (9b). This approach has numerous advantages
over the standard ADMM; e.g., it can be readily extended to multiblock
optimization problems for which ADMM is not guaranteed to converge
in general [31]. These extensions are outside of the scope of this study
and will be reported elsewhere.

B. MM Using the Proximal Augmented Lagrangian

Theorem 1 allows us to solve nondifferentiable subproblem (6a) by
minimizing the continuously differentiable proximal augmented La-
grangian Lμ (x; yk ) over x. We note that a similar approach was also
applied to MM in [32] for the particular case in which g is the indi-
cator function of a convex set. Relative to ADMM, our customized
MM algorithm guarantees convergence to a local minimum and offers
systematic update rules for the parameter μ. Relative to proximal gra-
dient, we can solve (1) with a general bounded linear operator T and
can incorporate second-order information about f .

Using reformulated expression (7) for the augmented Lagrangian,
MM minimizes Lμ (x; yk ) over the primal variable x and updates the
dual variable y using the gradient ascent with step size 1/μ as

xk+1 = argmin
x

Lμ (x; yk ) (MMa)

yk+1 = yk + 1
μ
∇yLμ (xk+1 ; yk ) (MMb)

where ∇yLμ (xk+1 ; yk ) := T (xk+1 ) − z�μ (xk+1 , yk ) = T (xk+1 ) −
proxμg (T (xk+1 ) + μyk ) denotes the primal residual.

In contrast to ADMM, our approach does not attempt to avoid the
lack of differentiability of g by fixing z to minimize over x. By con-
straining Lμ (x, z; y) to the manifold resulting from explicit minimiza-
tion over z, we guarantee continuous differentiability of the proximal
augmented LagrangianLμ (x; y). MM is a gradient ascent algorithm on
the Lagrange dual of a version of (4) in which the objective function is
replaced by f (x) + g(z) + 1

2μ ‖T (x) − z‖2 ; see [8, Sec. 2.3] and [33].
Since its closed-form expression is typically unavailable, MM uses (6a)
to evaluate this dual computationally, and then, take a gradient ascent
step (6b) in y. ADMM avoids this issue by solving simpler, separate
subproblems (5a) and (5b), but, unlike (6b) in MM, the y-update (5c) in
ADMM is not a gradient ascent step on the “strengthened dual.” MM,
thus, offers stronger convergence results [6], [7] and may lead to fewer
y-update steps.

Remark 2: The proximal augmented Lagrangian enables MM be-
cause the x-minimization subproblem (MMa) in MM is not more
difficult than its counterpart (5a) in ADMM. For LASSO prob-
lem (3), the z-update (5b) in ADMM is given by soft thresholding,
zk+1 = Sγ μ (xk+1 + μyk ), and the x-update (5a) requires minimiza-
tion of the quadratic function [6]. In contrast, the x-update (MMa) in
MM requires minimization of (1/2) ‖Ax− b‖2 +Mμk g (x+ μk y

k ),
where Mμk g (v) is the Moreau envelope associated with the �1 norm;
i.e., the Huber function. Although in this case, the solution to (5a)
can be characterized explicitly by a matrix inversion, this is not true
in general. The computational cost associated with solving either (5a)
or (MMa) using first-order methods scales at the same rate.

Algorithm: The procedure outlined in [11, Algorithm 17.4] al-
lows minimization subproblem (MMa) to be inexact, provides a method
for adaptively adjusting μk , and describes a more refined update of the
Lagrange multiplier y. We have incorporated these refinements into
our proximal augmented Lagrangian algorithm for solving (4); see
Algorithm 1 in [10]. Because of the equivalence established in Theo-
rem 1, convergence to a local minimum follows from the convergence
results for standard MM [9]. As discussed in [10], since Lμ (x; y)
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is once continuously differentiable, many techniques can be used to
solve subproblem (MMa), including gradient descent, proximal gradi-
ent methods that exploit the proximal operator associated with the
Moreau envelope, and quasi-Newton methods such as the limited-
memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) [11, Algo-
rithm 7.4] method, which is guaranteed to converge for convex func-
tions with Lipschitz continuous gradients [36]. For example, in [34],
proximal gradient methods were used for subproblem (MMa) to solve
a sparse feedback synthesis problem introduced in [3]. Computational
savings were shown relative to standard proximal gradient method and
ADMM.

Remark 3: For regularization functions that do not admit simply
computable proximal operators, proxμg has to be evaluated numer-
ically by solving (2a). If this is expensive, the primal-descent dual-
ascent algorithm of Section IV offers an appealing alternative because
it requires one evaluation of proxμg per iteration.

IV. ARROW–HURWICZ–UZAWA GRADIENT FLOW

We now consider an alternative approach to solving (1). Instead of
minimizing over the primal variable and performing gradient ascent
in the dual, we simultaneously update the primal and dual variables
to find the saddle point of the augmented Lagrangian. The continuous
differentiability of Lμ (x; y) established in Theorem 1 enables the use
of Arrow–Hurwicz–Uzawa gradient flow dynamics [11]

[
ẋ

ẏ

]

=

[
−∇xLμ (x; y)

∇yLμ (x; y)

]

. (GF)

In Section IV-A, we show that the gradient flow dynamics (GF) glob-
ally converge to the set of saddle points of the proximal augmented
Lagrangian Lμ (x; y) for a convex f with a Lipschitz continuous gra-
dient. In Section IV-B, we employ the theory of integral quadratic con-
straints (IQCs) to establish global exponential stability for a strongly
convex f with a Lipschitz continuous gradient and estimate conver-
gence rates. Finally, in Section IV-C, we identify classes of problems
for which dynamics (GF) are convenient for distributed implementation
and compare/contrast our framework to the existing approaches.

A. Global Asymptotic Stability for Convex f

We first characterize the optimal primal-dual pairs of optimization
problem (4) with the Lagrangian, f (x) + g(z) + 〈y, T (x) − z〉 . The
associated first-order optimality conditions are given by

0 = ∇f (x� ) + T †(y� ) (10a)

0 ∈ ∂g(z� ) − y� (10b)

0 = T (x� ) − z� (10c)

where ∂g is the subgradient of g. Clearly, these are equivalent to the
optimality condition for (1), i.e., 0 ∈ ∇f (x� ) + T †(∂g(T (x� ))). Even
though we state the result for x ∈ Rn and T (x) = Tx where T ∈
Rm×n is a given matrix, the proof for x in a Hilbert space and a
bounded linear operator T follows from similar arguments.

Theorem 2: Let f be a continuously differentiable convex function
with a Lipschitz continuous gradient and let g be a proper, lower semi-
continuous, convex function. Then, the set of optimal primal-dual pairs
(x� , y� ) of (4) for the gradient flow dynamics (GF)

[
ẋ

ẏ

]

=

[
−

(
∇f (x) + T T ∇Mμg (Tx+ μy)

)

μ (∇Mμg (Tx + μy) − y)

]

(GF1)

is globally asymptotically stable (GAS) and each x� is a solution of (1).
Proof: We introduce a change of variables x̃ := x− x� , ỹ := y −

y� and a Lyapunov function candidate,V (x̃, ỹ) = 1
2 〈x̃, x̃〉 + 1

2 〈ỹ, ỹ〉 ,
where (x� , z� ; y� ) is an optimal solution to (4) that satisfies (10). The

dynamics in the (x̃, ỹ)-coordinates are given by

[
˙̃x
˙̃y

]

=

[
−(∇f (x) −∇f (x� ) + (1/μ) T T m̃)

m̃ − μ ỹ

]

(11)

where m̃ = μ (∇Mμg (Tx+ μy) −∇Mμg (Tx� + μy� )) can be ex-
pressed as

m̃ := ṽ − z̃

ṽ := T x̃ + μỹ = (Tx + μy) − (Tx� + μy� ) (12)

z̃ := proxμg (Tx + μy) − proxμg (Tx
� + μy� ).

The derivative of V along the solutions of (11) is given by

V̇ = −〈x̃,∇f (x) −∇f (x� )〉 − 1
μ
‖T x̃‖2 + 1

μ
〈T x̃− μỹ, z̃〉

= −〈x̃,∇f (x) −∇f (x� )〉 − 1
μ

(
‖T x̃‖2 − 2 〈T x̃, z̃〉 + 〈ṽ, z̃〉

)
.

Since f is convex with an Lf -Lipschitz continuous gradient and since
proxμg is firmly nonexpansive [4], i.e., 〈ṽ, z̃〉 ≥ ‖z̃‖2 , we have

V̇ (x̃, ỹ) ≤ − 1
L f

‖∇f (x) −∇f (x� )‖2 − 1
μ
‖T x̃− z̃‖2 . (13)

Thus, V̇ ≤ 0 and each point in the set of optimal primal-dual pairs
(x� , y� ) is stable in the sense of Lyapunov.

The right-hand side in (13) becomes zero when ∇f (x) = ∇f (x� )
and T x̃ = z̃. Under these conditions, we have V̇ = −

〈
T T ỹ, x̃

〉
and

the set of points for which V̇ = 0 is given by D = {(x, y);∇f (x) =
∇f (x� ), T x̃ = z̃,

〈
T T ỹ, x̃

〉
= 0}. Furthermore, substitution of T x̃ =

z̃ into (12) yields m̃ = μỹ and (11) simplifies to, ˙̃x = −T T ỹ, ˙̃y =
0. For (11), the largest invariant set Ω := {(x, y);∇f (x) = ∇f (x� ),
T x̃ = z̃, T T ỹ = 0} ⊆ D is obtained from

〈
T T ỹ, x̃

〉
≡ 0 ⇒

〈
T T ˙̃y, x̃

〉
+

〈
T T ỹ, ˙̃x

〉
= −‖T T ỹ‖2 ≡ 0

and LaSalle’s invariance principle implies that Ω is GAS.
To complete the proof, we need to show that any x and y that lie

in Ω also satisfy optimality conditions (10) of problem (4) with z =
z�μ (x, y) = proxμg (Tx+ μy), and thus, that x solves problem (1).
For any (x, y) ∈ Ω, ∇f (x) = ∇f (x� ) and T T y = T T y� . Since x�

and y� are optimal primal-dual points, we have ∇f (x) + T T y =
∇f (x� ) + T T y� = 0 which implies that every (x, y) ∈ Ω satis-
fies (10a). Optimality condition (10b) for (x� , y� ), Tx� = z� , together
with T x̃ = z̃, imply that Tx = z, i.e., x and z = proxμg (Tx+ μy)
satisfy (10c). Finally, the optimality condition of the problem (2a) that
defines proxμg (v) is ∂g(z) + 1

μ
(z − v) � 0. Letting v = Tx+ μy

from the expression (8) that characterizes the z�μ -manifold and noting
Tx = z by (10c) leads to (10b). Thus, every (x, y) ∈ Ω satisfies (10),
implying that the set of primal-dual optimal points is GAS. �

B. Global Exponential Stability for Strongly Convex f

We express (GF), or equivalently (GF1), as a linear system G con-
nected in feedback with nonlinearities that correspond to the gradients
of f and of the Moreau envelope of g; see Fig. 1. These nonlinearities
can be conservatively characterized by IQCs. Exponential stability of
G connected in feedback with any nonlinearity that satisfies these IQCs
implies exponential convergence of (GF) to the primal-dual optimal so-
lution of (4). In what follows, we adjust the tools of [18] and [19] to our
setup and establish global exponential stability by evaluating the fea-
sibility of an LMI. We assume that the function f is mf -strongly
convex with an Lf -Lipschitz continuous gradient. Characterizing
additional structural restrictions on f and g with IQCs may lead to
tighter bounds on the rate of convergence.
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Fig. 1. Block diagram of gradient flow dynamics (GF1) where G is a
linear system in feedback with nonlinearities that satisfy (15).

As illustrated in Fig. 1, (GF1) can be expressed as a linear systemG
connected via feedback to a nonlinear block Δ as

ẇ = Aw + B u, ξ = C w, u = Δ(ξ)

A =

[−mf I

−μI

]

, B =

⎡

⎣
−I − 1

μ
T T

0 I

⎤

⎦ , C =

[
I 0

T μI

]

where w := [ xT yT ]T , ξ := [ ξT1 ξT2 ]T , and u := [ uT1 uT2 ]T . Non-
linearity Δ maps the system outputs ξ1 = x and ξ2 = Tx + μy
to the inputs u1 and u2 via u1 = Δ1(ξ1 ) := ∇f (ξ1 ) −mf ξ1 and
u2 = Δ2(ξ2 ) := μ∇Mμg (ξ2 ) = ξ2 − proxμg (ξ2 ).

When the mapping ui = Δi (ξi ) is the Li -Lipschitz continuous gra-
dient of a convex function, it satisfies the IQC [19, Lemma 6]

[
ξi −ξ0
ui −u0

]T
[

0 L̂i I

L̂i I −2I

] [
ξi − ξ0

ui − u0

]

≥ 0 (14)

where L̂i ≥ Li , ξ0 is some reference point, and u0 = Δi (ξ0 ). Since f
ismf -strongly convex, the mapping Δ1(ξ1 ) is the gradient of the con-
vex function f (ξ1 ) − (mf /2)‖ξ1‖2 . Lipschitz continuity of ∇f with
parameter Lf implies Lipschitz continuity of Δ1(ξ1 ) with parame-
ter L1 := Lf −mf ; thus, Δ1 satisfies (14) with L̂1 ≥ L1 . Similarly,
Δ2(ξ2 ) is the scaled gradient of the convex Moreau envelope and is
Lipschitz continuous with parameter 1; thus, Δ2 also satisfies (14) with
L̂2 ≥ 1. These two IQCs can be combined into

(η − η0 )T Π (η − η0 ) ≥ 0, η := [ ξT uT ]T . (15)

For a linear systemG connected in feedback with nonlinearities that
satisfy IQC (15), [20, Th. 3] establishes ρ-exponential convergence, i.e.,
‖w(t) − w�‖ ≤ τe−ρt‖w(0) − w�‖ for some τ, ρ > 0, by verifying
the existence of a matrix P � 0 such that

[
AT
ρ P + PAρ PB

BT P 0

]

+

[
CT 0

0 I

]

Π

[
C 0

0 I

]

� 0 (16)

where Aρ := A + ρI . In Theorem 3, we determine a scalar condition
that ensures global exponential stability when TT T is full rank.

Theorem 3: Let f be strongly convex with parameter mf , let its
gradient be Lipschitz continuous with parameter Lf , let g be proper,
lower semicontinuous, and convex, and let TT T be full rank. Then, if
μ ≥ Lf −mf , there is a ρ > 0 such that the dynamics (GF) converge
ρ-exponentially to the optimal point of (4).

Proof: Since any function that is Lipschitz continuous with param-
eter L is also Lipschitz continuous with parameter L̂ ≥ L, we estab-
lish the result for μ = L̂1 := Lf −mf and L̂2 = 1. We utilize [20,
Th. 3] to show ρ-exponential convergence by verifying matrix inequal-
ity (16) through a series of equivalent expressions (17). We first apply
the Kalman-Yakubovich-Popov (KYP) Lemma [39, Th. 1] to (16) to

obtain an equivalent frequency-domain characterization
[
Gρ (jω)

I

]∗

Π

[
Gρ (jω)

I

]

� 0, ∀ ω ∈ R (17a)

where Gρ (jω) = C(jωI −Aρ )−1B. Evaluating the left-hand side
of (17a) for L = μ and dividing by −2 yields the matrix inequality

⎡

⎢
⎢
⎣

μm̂ + m̂2 + ω2

m̂2 + ω2 I
m̂

m̂2 + ω2 T
T

∗ m̂/μ

m̂2 + ω2 TT
T +

ω2 − ρμ̂

μ̂2 + ω2 I

⎤

⎥
⎥
⎦ � 0 (17b)

where m̂ := mf − ρ > 0 and μ̂ := μ − ρ > 0 so that Aρ is Hurwitz,
i.e., the system Gρ is stable. Since the (1, 1) block in (17b) is positive
definite for all ω, the matrix in (17b) is positive definite if and only if
the corresponding Schur complement is positive definite

m̂/μ

μm̂ + m̂2 + ω2 TT
T +

ω2 − ρμ̂

μ̂2 + ω2 I � 0. (17c)

We exploit the symmetry of TT T to diagonalize (17c) via a unitary
coordinate transformation. This yields m scalar inequalities parame-
terized by the eigenvalues λi of TT T . Multiplying the left-hand side of
these inequalities by the positive quantity (μ̂2 + ω2 )(μm̂ + m̂2 + ω2 )
yields a set of equivalent, quadratic in ω2 , conditions

ω4 +
(
m̂ λi
μ

+ m̂2 + μm̂ − ρμ̂
)
ω2 + m̂μ̂

(
μ̂λi
μ

− ρ(μ + m̂)
)
> 0.

(17d)

Condition (17d) is satisfied for all ω ∈ R if there are no ω2 ≥ 0 for
which the left-hand side is nonpositive. When ρ = 0, both the constant
term and the coefficient ofω2 are strictly positive, which implies that the
roots of (17d) as a function of ω2 are either not real or lie in the domain
ω2 < 0, which cannot occur for ω ∈ R. Finally, continuity of (17d)
with respect to ρ implies the existence a positive ρ that satisfies (17d)
for all ω ∈ R. �

Remark 4: Each eigenvalue λi of a full rank matrix TT T is posi-
tive, and hence, to estimate the exponential convergence rate it suffices
to check (17d) only for the smallest λi . A sufficient condition for (17d)
to hold for each ω ∈ R is positivity of the constant term and the coeffi-
cient multiplying ω2 . For ρ < min (mf , μ), these can be, respectively,
expressed as the following quadratic inequalities in ρ:

ρ2 − γ ρ + λm in > 0, 2ρ2 − (γ + μ +mf ) ρ + γ mf > 0

where γ := μ +mf + λm in
μ

. The solutions to these provide the fol-
lowing estimates of the exponential convergence rate: 1) ρ < ρ1 when
mf ≥ μ; and 2) ρ < min (ρ1 , ρ2 ) when mf < μ, where

ρ1 = 1
2 (γ −

√
γ2 − 4λm in )

ρ2 = 1
4 (γ + μ +mf −

√
(γ + μ +mf )2 − 8 γ mf ).

Our explicit analytical expressions can be used to determine the optimal
value of μ ≥ Lf −mf to maximize the aforementioned decay rates.

Remark 5: A similar convergence rate result can be obtained by
applying [19, Th. 4] to a discrete-time implementation of the primal-
descent dual-ascent dynamics that results from a forward Euler dis-
cretization of (GF); for details, see [38].

Remark 6: To the best of our knowledge, we are the first to establish
global exponential stability of the primal-dual gradient flow dynamics
for nonsmooth composite optimization problems (1) with a strongly
convex f . Recent reference [39] proves similar result for a narrower
class of problems (strongly convex and smooth objective function with
either affine equality or inequality constraints). Both of these can be cast
as (1) via introduction of suitable indicator functions and exponential
stability follows immediately from our Theorem 3.
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C. Distributed Implementation

Gradient flow dynamics (GF) are convenient for distributed imple-
mentation. If the state vector x corresponds to the concatenated states
of individual agents, xi , the sparsity pattern of T and the structure of
the gradient map ∇f : Rn → Rn dictate the communication topology
required to form ∇Lμ in (GF). For example, if f (x) =

∑
fi (xi ) is

separable over the agents, then ∇fi (xi ) can be formed locally. If in
addition T T is an incidence matrix of an undirected network with the
graph Laplacian T T T , each agent need only share its state xi with its
neighbors and maintain dual variables yi that correspond to its edges.
A distributed implementation is also natural when the mapping ∇f :
Rn → Rn is sparse.

Our approach provides several advantages over existing distributed
optimization algorithms. Even for problems (1) with nondifferentiable
regularizers g, a formulation based on the proximal augmented La-
grangian yields gradient flow dynamics (GF) with a continuous right-
hand side. This is in contrast to existing approaches that employ subgra-
dient methods [13] or use discontinuous projected dynamics [14]–[17].
Note that although the augmented Lagrangian Lμ (x, y; z) contains a
quadratic term 1

2μ ‖T (x) − z‖2 , it is not jointly strongly convex in
x and z and the resulting proximal augmented Lagrangian (7) is not
strictly convex–concave in x and y. Furthermore, when T is not diag-
onal, a distributed proximal gradient cannot be implemented because
the proximal operator of g(Tx) may not be separable. Finally, ADMM
has been used for distributed implementation in the situations where f
is separable and T is an incidence matrix. Relative to such a scheme,
(GF) does not require solving an x-minimization subproblem in each
iteration and provides a guaranteed rate of convergence.

Remark 7: Special instances of our framework have strong connec-
tions with the existing methods for distributed optimization on graphs;
e.g., [12], [13], and [40]. The networked optimization problem of mini-
mizing f (x̄) =

∑
fi (x̄) over a single variable x̄ can be reformulated as∑

fi (xi ) + g(Tx) where the components fi of the objective function
are distributed over independent agents xi , x is the aggregate state, T T

is the incidence matrix of a strongly connected and balanced graph, and
g is the indicator function associated with the set Tx = 0. The g(Tx)
term ensures that at feasible points, xi = xj = x̄ for all i and j. It is
easy to show that ∇Mμg (v) = (1/μ) v and that the dynamics (GF) are

ẋ = −∇f (x) − (1/μ)Lx− ỹ, ˙̃y = β L x (18)

where β > 0, L := T T T is the graph Laplacian of a connected undi-
rected network, and ỹ := T T y belongs to the orthogonal complement
of the vector of all ones. The only difference relative to [13, Eq. (20)]
and [42, Eq. (11)] is that −ỹ appears instead of −Lỹ in (18) for the
dynamics of the primal variable x.

Remark 8: The forward Euler discretization of (18) is given by

xk+1 = (I − (α/μ)L) xk − α∇f (xk ) − α ỹk

ỹk+1 = ỹk + α β L xk
(19)

where α is the step size, and the EXTRA algorithm [43, Eq. (2.13)],
which has received significant recent attention

xk+1 = Wxk − α∇f (xk ) +
1
2

k−1∑

i=0

(W − I) xi (20)

can be clearly recovered from (19) by setting β = 1/(2αμ) and taking
W = I − (α/μ)L in (20).

V. EXAMPLES

We solve the problems of edge addition in directed consensus net-
works and optimal placement to illustrate the effectiveness of the prox-
imal augmented Lagrangian method.

Fig. 2. (a) Balanced plant graph with seven nodes and ten directed
edges (solid black lines). A sparse set of two added edges (dashed red
lines) is identified by solving (22) with γ = 3.5 and R = I . (b) Tradeoff
between performance and sparsity resulting from the solution to (22) and
(23) for the network shown in Fig. 2(a). Performance loss is measured
relative to the optimal centralized controller (i.e., all edges are used).

A. Edge Addition in Directed Consensus Networks

A consensus network with N nodes converges to the average of the
initial node values ψ̄ = (1/N )

∑
i ψi (0) if and only if it is strongly

connected and balanced [42]. Unlike for undirected networks [22],
[23], the problem of edge addition in directed consensus networks is
not known to be convex. The steady-state variance of the deviations
from average is given by the square of the H2 norm of

ψ̇ = −(Lp + Lx )ψ + d, ξ =

[
Q1/2

−R1/2Lx

]

ψ

where d is a disturbance, Lp is a weighted directed graph Laplacian
of a plant network, Q := I − (1/N )11T penalizes the deviation from
average, and R � 0 is the control weight. The objective is to optimize
the H2 norm (from d to ξ) by adding a few additional edges, specified
by the graph Laplacian Lx of a controller network.

To ensure convergence of ψ to the average of the initial node values,
we require that the closed-loop graph Laplacian, L = Lp + Lx , is
balanced. This condition amounts to the linear constraint, 1T L = 0.
We express the directed graph Laplacian of the controller network
as, Lx =

∑
i �= j Lij zij =:

∑
l Ll zl where zij ≥ 0 is the added edge

weight that connects node j to node i,Lij := eieTi − eieTj , ei is the ith
basis vector in Rn , and the integer l indexes the edges such that zl = zij
and Ll = Lij . For simplicity, we assume that the plant network Lp is
balanced and connected. Thus, enforcing thatL is balanced amounts to
enforcing the linear constraint 1T Lx = 1T (

∑
Llzl ) =: (Ez)T = 0

on z, where E is the incidence matrix [42] of the edges that may be
added. Any vector of edge weights z that satisfies this constraint can
be written as z = Tx where the columns of T span the nullspace of
the matrix E and provide a basis for the space of balanced graphs, i.e.,
the cycle space [42]. Each feasible controller Laplacian can thus be
written as

Lx =
∑

l

Ll [Tx]l =
∑

l

Ll

[ ∑

k

(T ek ) xk

]

l

=:
∑

k

L̂k xk (21a)

where the matrices L̂k are given by L̂k =
∑

l Ll [T ek ]l .
Since the mode corresponding to 1 is marginally stable, unobserv-

able, and uncontrollable, we introduce a change of coordinates to the
deviations from average φ = V T ψ where V T 1 = 0 and discard the
average mode ψ̄ = 1T ψ. The energy of the deviations from average is
given by the the H2 norm squared of the reduced system

f (x) =
〈
V T (Q + LTx RLx ) V,X

〉
, Â X +XÂT + B̂B̂T = 0

(21b)

where X is the controllability Gramian of the reduced system with
Â := −V T (Lp + Lx )V and B̂ := V T .
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Fig. 3. (a) Total time; (b) number of outer iterations; and (c) average time per outer iteration required to solve (22) with γ = 0.01, 0.1, 0.2 for a
cycle graph with N = 5 to 50 nodes as a function of m = 20 to 2450 potential added edges using PAL ( ), ADMM ( ), and ADMM with the
adaptive μ-update heuristic [6] ( ). PAL requires fewer outer iterations, and thus, a smaller total solving time.

To balance the closed-loop H2 performance with the number of
added edges, we introduce a regularized optimization problem

xγ = argmin
x

f (x) + γ 1T Tx+ I+ (Tx). (22)

Here, the regularization parameter γ > 0 specifies the emphasis on
sparsity relative to the closed-loop performance f , and I+ is the in-
dicator function associated with the nonnegative orthant Rm

+ . When
the desired level of sparsity for the vector of the added edge weights
zγ = Txγ has been attained, optimal weights for the identified set of
edges are obtained by solving

minimize
x

f (x) + IZγ (Tx) + I+ (Tx) (23)

where Zγ is the set of vectors with the same sparsity pattern as zγ and
IZγ is the indicator function associated with this set.

1) Implementation: We next provide implementation details for
solving (22) and (23). The proof of next lemma is omitted for brevity.

Lemma 4: Let a graph Laplacian of a directed plant network Lp be
balanced and connected and let Â, B̂, Lx , and V be as defined in (21a)
and (21b). The gradient of f (x) defined in (21b) is given by

∇f (x) = 2vec
(〈

(RLxV − V P )XV T , L̂k

〉)

where X and P are the controllability and observability Gramians
determined by (21b) and ÂT P + P Â + V T (Q + LTx RLx )V = 0.

The proximal operator associated with the regularization function
gs (z) := γ1T z + I+ (z) in (22) is proxμgs (vi ) = max{0, vi − γμ},
the Moreau envelope is given by Mμgs (v) =

∑
i{v2

i /(2μ), vi ≤
γμ; γ (vi − γμ/2), vi > γμ}, and ∇Mμgs (v) = max {v/μ, γ}.
The proximal operator of the regularization function in (23), gp (z) :=
IZγ (z) + I+ (z), is a projection onto the intersection of the set Zγ

and the nonnegative orthant, proxμgp (v) = PE(v), the Moreau enve-
lope is the distance to E := Zγ ∩ Rm

+ , Mμgp (v) = 1
2μ ‖v − PE(v)‖2

and ∇Mμgp (v) is determined by a vector pointing from E to v,
∇Mμgp (v) = 1

μ
(v − PE(v)).

2) Computational Experiments: We solve (22) and (23) us-
ing Algorithm 1, where L-BFGS is employed in the x-minimization
subproblem (MMa). For the plant network shown in Fig. 2(a), Fig. 2(b)
illustrates the tradeoff between the number of added edges and the
closed-loop H2 norm. The added edges are identified by computing
the γ-parameterized homotopy path for problem (22), and the optimal
edge weights are obtained by solving (23). The red dashed lines in
Fig. 2(a) show the optimal set of two added edges. These are obtained
for γ = 3.5 and they yield 23.91% performance loss relative to the
setup in which all edges in the controller graph are used. We note that
the same set of edges is obtained by conducting an exhaustive search.
This suggests that the proposed convex regularizers may offer a good
proxy for solving difficult combinatorial optimization problems.

We also consider simple directed cycle graphs with N = 5 to 50
nodes andm = N 2 −N potential added edges. We solve (22) for γ =
0.01, 0.1, 0.2, and R = I using the proximal augmented Lagrangian

Fig. 4. Set of five distributed agents tracking targets (black ◦) whose
optimal positions are determined by the solution to (24) .

MM algorithm (PAL), ADMM, and ADMM with an adaptive heuristic
for updating μ [6] (ADMM μ). The x-update in each algorithm is
obtained using L-BFGS. Since gs (Tx) and gp (Tx) are not separable
in x, proximal gradient cannot be used here.

Fig. 3(a) shows the time required to solve problem (22) in terms of
the total number of potential added edges; Fig. 3(b) demonstrates that
PAL requires fewer outer iterations; and Fig. 3(c) illustrates that the av-
erage computation time per outer iteration is roughly equivalent for all
three methods. Even with an adaptive update of μ, ADMM requires
more outer iterations, which increases overall solving time relative
to the proximal augmented Lagrangian method. Thus, compared to
ADMM, PAL provides computational advantage by reducing the num-
ber of outer iterations [indexed by k in Algorithm 1 and in (5)].

B. Optimal Placement Problem

To illustrate the utility of our primal-descent dual-ascent approach,
we consider an example in which mobile agents aim to minimize their
Euclidean distances relative to a set of targets {bi} while staying within
a desired distance from their neighbors in a network with the incidence
matrix T as

minimize
x

∑

i

(xi − bi )2 + I[−1 ,1] (Tx). (24)

Here, Tx is a vector of interagent distances that must be kept
within an interval [−1, 1]. Applying primal-descent dual-ascent up-
date rules to (24) achieves path planning for first-order agents ẋ = u
with u = −∇xLμ (x; y). The proximal operator is projection onto a
box, proxμI [−1 , 1 ]

(z) = max(min(z, 1),−1), the Moreau envelope

is the distance squared to that set, MμI [−1 , 1 ] (z) = 1
2μ

∑
S2

1 (zi ), and

∇MμI [−1 , 1 ] (z) = 1
μ
S1 (z). To update its state, each agent xi needs

information from its neighbors in a network with a Laplacian T T T .
Methods based on the subderivative are not applicable because the

indicator function is not subdifferentiable. Proximal methods are hin-
dered because the proximal operator of I[−1 ,1] (Tx) is difficult to com-
pute due to T . Since f (x) =

∑
(xi − bi )2 is separable, a distributed

ADMM implementation can be applied; however, it may require large
discrete jumps in agent positions, which could be unsuitable for vehi-
cles. Moreover, when f is not separable, a distributed implementation
of the x-minimization step (5a) in ADMM would not be possible.
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Fig. 4 shows an implementation for a problem with five agents whose
set of targets changes position at time 5. The primal-descent dual-ascent
dynamics (GF) are simulated in MATLAB using ode45.

VI. CONCLUDING REMARKS

For a class of nonsmooth composite optimization problems that arise
in structured optimal control, we have introduced the continuously
differentiable proximal augmented Lagrangian function. This function
is obtained by collapsing the associated augmented Lagrangian onto
the manifold resulting from explicit minimization over the variable in
the nonsmooth part of the objective function. Our approach facilitates
development of customized algorithms based on MM and the primal-
descent dual-ascent method.

MM based on the proximal augmented Lagrangian is applica-
ble to a broader class of problems than proximal gradient methods,
and it has more robust convergence guarantees, more rigorous pa-
rameter update rules, and better practical performance than ADMM.
The primal-descent dual-ascent gradient dynamics we proposed are
suitable for distributed implementation and have a continuous right-
hand side. When the differentiable component of the objective func-
tion is (strongly) convex, we establish global (exponential) asymptotic
stability. Finally, we illustrate the efficacy of our algorithms using the
edge addition and optimal placement problems. Future work will focus
on developing second-order updates for the primal and dual variables
and on providing an extension to nonconvex regularizers.
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