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Abstract: We take advantage of system invariances and symmetries to gain convexity and
computational advantage in regularized H2 and H∞ optimal control problems. For systems
with symmetric dynamic matrices, the problem of minimizing the H2 or H∞ performance of
the closed-loop system can be cast as a convex optimization problem. Although the assumption
of symmetry is restrictive, studying the symmetric component of a general system’s dynamic
matrices provides bounds on the H2 and H∞ performance of the original system. Furthermore,
we show that for certain classes of systems, block-diagonalization of the system matrices can
bring the regularized optimal control problems into forms amenable to efficient computation via
distributed algorithms. One such class of systems is spatially-invariant systems, whose dynamic
matrices are circulant and therefore block-diagonalizable by the discrete Fourier transform.
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1. INTRODUCTION

Structured control problems are, in general, challenging
and nonconvex. Many recent works have identified classes
of systems for which structured optimal control prob-
lems can be cast in convex forms. These include funnel
causal and quadratically invariant systems (Bamieh and
Voulgaris, 2005; Rotkowitz and Lall, 2006), positive sys-
tems (Rantzer, 2011; Dhingra et al., 2016), structured and
sparse consensus/synchronization networks (Xiao et al.,
2007; Lin et al., 2012; Fardad et al., 2014a; Wu and Jo-
vanović, 2014; Hassan-Moghaddam and Jovanović, 2015),
optimal sensor/actuator selection (Polyak et al., 2013;
Dhingra et al., 2014), and symmetric modifications to
symmetric linear systems (Dhingra and Jovanović, 2015).

In many large-scale problems, controller structure is vitally
important. As such, much effort has been devoted to
developing scalable algorithms for nonconvex regularized
H2 and H∞ design problems (Fardad et al., 2011; Lin
et al., 2013; Schuler et al., 2011; Polyak et al., 2013;
Dhingra et al., 2014; Matni and Chandrasekaran, 2014;
Matni, 2015; Matni and Chandrasekaran, 2015). Although
many recent works have developed efficient algorithms
for the nonconvex regularized H2 problems, in general,
regularized H∞ problems are difficult because the H∞
norm is nonsmooth.

We propose a principled approach to general regularized
H2 and H∞ optimal controller design. Our formulation
treats control problems that minimize the H2 or H∞ norm
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by modifying the dynamical generator of a linear system,
such as in linear state feedback. In this work, we use
symmetries in system structure to form convex problems
and gain computational advantage.

The contributions of this paper are twofold. First, in a
similar vein as (Dhingra and Jovanović, 2015), we utilize
the symmetric component of a general linear system to
form a symmetric system for which the regularized H2 and
H∞ optimal control problems are convex. We implement
the controllers designed by this method on the original
system. We show that this procedure guarantees stability
and that the closed-loop H2 and H∞ performance of the
symmetric system is an upper bound on the closed-loop
H2 and H∞ performance of the original system.

Second, we provide a way to gain computational advantage
by exploiting the block-diagonalizability of large scale
systems. Such a structure arises, for example, in spatially-
invariant systems (Bamieh et al., 2002). In (Zoltowski
et al., 2014), the authors took advantage of this property
to develop an efficient and scalable algorithm for sparsity-
promoting feedback design. When a spatially-invariant
system is subject to a spatially-invariant control law, the
dynamics of the system can be represented as the sum of
independent subsystems, making the problem amenable to
distributed optimization.

The rest of the paper is organized as follows. In Section 2,
we formulate the regularized H2 and H∞ optimal control
problems and provide several example applications that
motivate our developments. In Section 3, we describe the
symmetric design procedure and provide several results
on stability, spectral properties, performance guarantees,
and first order approximations. In Section 4, we develop
methods which gain computational advantage from jointly
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block-diagonalizable systems and describe this process for
spatially-invariant systems in particular. In Section 5, we
provide two examples. Finally, in Section 6, we summarize
our work and discuss ongoing research directions.

2. PROBLEM FORMULATION

We consider the class of systems,

ẋ = (A − K(v))x + Bd

z =

[
C
R(v)

]
x

(1)

where v ∈ Rm is a design parameter, K(·) : Rm → Rn×n

is a linear operator, x(t) ∈ Rn is the state vector, C
is mapping from the state to a regulated output, R(v)
is a mapping from the state to a measure of control
effort, d(t) ∈ Rp is a white stochastic disturbance with
E (d(t1) dT (t2)) = Iδ(t1 − t2), and E is the expectation
operator. Taking v = vec(F ), K(v) = B2F and R(v) =
R1/2F where R � 0 ∈ Rp×p, F ∈ Rp×n, and B2 ∈ Rn×p

yields the traditional state feedback control problem. We
consider v to be constant in time.

Our objective is to design a stabilizing v that solves the
regularized optimal control problem,

minimize
v

J(v) + g(v)

subject to A − K(v) Hurwitz
(2)

where J(v) is a performance metric, taken to be either the
closed loop H2 or H∞ norm, and g(v) can be any convex
function of v. The H2 performance, which we denote by
J2(v), is a measure of the variance amplification from the
disturbances d to the regulated output z in system (1),

J2(v) := lim
t→∞

E
(
zT (t) z(t)

)
which can be computed by

J2(v) = trace
(
X(CTC + RT (v)R(v))

)
where X is the controllability gramian

(A − K(v))X + X (A − K(v))
T

+ BBT = 0.

The H∞ performance metric, which we denote by J∞(v),
is the maximum induced L2 gain from d to z in system (1),

J∞(v) := sup
‖d‖L2

≤1

‖z‖L2

‖d‖L2

,

where the L2 norm of a signal f is defined as,

‖f‖2L2
:=

∫ ∞
0

f2(t) dt.

This performance metric corresponds to the peak of the
frequency response,

J∞(v) = sup
ω

σmax

(
C (jωI − (A + K(v)))−1B

)
.

The unregularized H2 and H∞-optimal linear state feed-
back problems can be cast in a convex form via a suitable
change of coordinates; however, this change of coordinates
does not preserve the structure of the design variable v.

For many applications, v has physical significance and
penalizing it directly via g(v) is desirable. For example,
a quadratic penalty, ‖v‖22, would limit the magnitude of v,
and an `1 penalty, ‖v‖1 :=

∑
i |vi|, would promote sparsity.

Many structured optimal control problems can be cast in
the form of (2). For example, structured state feedback
problems have been extensively studied with particular ap-
plications to consensus networks and power systems (Lin
et al., 2013; Wu and Jovanović, 2014; Wu et al., 2014,
2016, 2015; Dhingra and Jovanović, 2016). Two other
applications are given below.

2.1 Applications

Design of edges in networks The problem of adding
undirected edges to an existing network can be cast in
this problem form. The dynamics are,

ẋ = −
(
L + E diag(v)ET

)
x + d

where L is a directed graph Laplacian which contains in-
formation about how the nodes are connected, E contains
information about the locations of potential added edges,
and K(v) := E diag(v)ET is a diagonal matrix of added
edge weights (Fardad et al., 2014b). Taking the regularizer
to be the `1 norm g(v) =

∑
i |xi| would limit the number

of edges added to the network.

Combination drug therapy design for HIV treatment The
problem of designing drug dosages for treating HIV (Jon-
sson et al., 2014, 2013) can be cast as,

ẋ =

(
A −

m∑
k=1

vkDk

)
x + d.

Here, the elements of x represent populations of HIV
mutants. The diagonal elements of A represent each mu-
tant’s replication rate and the off diagonal elements of A
represent the probability of mutation from one mutant to
another. The components of the vector v are dosages of
different drugs, where Dk is a diagonal matrix containing
information about how efficiently drug k kills each HIV
mutant. Here, quadratic regularization g(v) = ‖v‖22 would
limit the dose of the drugs prescribed and `1 regularization
g(v) =

∑
i |xi| would limit the amount of drugs prescribed.

3. SYMMETRIC SYSTEM DESIGN

One class of system for which J2(v) and J∞(v) are convex
arises when B = C = I, and A and K(v) are symmet-
ric matrices. Although this assumption seems restrictive,
studying such systems can inform the design of structured
controllers for more general classes of systems.

Any matrix A can be decomposed into its symmetric
As = 1

2 (A + AT ) and antisymmetric Aa = 1
2 (A −

AT ) components. The system which corresponds to the
symmetric components of the general system (1),

ẋ = (As − Ks(v))x + d (3)

where Ks(v) = 1
2 (K(v) +KT (v)) reveals interesting char-

acteristics of the original system.

In this section, we first show the convex formulations that
correspond to the optimalH2 andH∞ design of symmetric
systems. We then establish stability guarantees and perfor-
mance bounds for applying controllers designed by solving
the convex problem of regularized optimal control on the
symmetric system (3) to the original system (1). Finally,
we use perturbation analysis to show that the symmetric
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system is a high fidelity approximation for systems which
are dominated by the symmetric component.

3.1 Convex optimal control for symmetric systems

Although more general symmetric systems can be cast as
convex problems, here we assume B = C = I and R(v) = 0
to facilitate the transition to the discussion of spectral
properties and performance bounds.

H2-optimal control When As = AT
s is symmetric, the

controllability gramian of system (3) can be explicitly
expressed as,

Xs = − 1

2
(As − Ks(v))

−1

and, by taking a Schur complement, the regularized opti-
mal H2 control problem can be cast in a convex function
of v and an auxiliary variable Θ,

minimize
v,Θ

1

2
trace(Θ) + g(v)

subject to

[
Θ I
I −As +Ks(v)

]
� 0.

(4)

The matrix As − Ks(v) is always invariable when it
is Hurwitz. We note the structured LQR problem (i.e.,
R(v) = R1/2Ks(v)) for symmetric systems can also be
expressed as an SDP by taking the Schur complement of
Ks(v)RKs(v).

H∞-optimal control The peak of the frequency response
of a symmetric system occurs at ω = 0.

Proposition 1. For a system (3) with symmetric dynamics,
the disturbance that achieves the maximum induced L2

amplification corresponds to the constant signal d(t) = v
where v is the right principal singular vector of A−1.

Proof. A symmetric matrix can be diagonalized as, As =
UΛUT where Λ is a diagonal matrix with the eigenvalues
of As on the main diagonal and the columns of U contain
the corresponding eigenvectors. For such a matrix,

(jωI − As)
−1 = U diag

{
1

jω − λi

}
UT .

It is clear that ω = 0 maximizes the singular values of
the above matrix. Thus, the H∞ norm of (3) can be
characterized by σmax

(
−(As − K(v))−1

)
.

The H∞-optimal control problem for symmetric systems
can therefore be expressed as,

minimize
v,Θ

σmax(Θ) + g(v)

subject to

[
Θ I
I −As +Ks(v)

]
� 0.

(5)

As we show in the next subsection, this convex problem
can be used for structured H∞ control design. This is
particularly advantageous because many of the existing
algorithms for general structured H2 control cannot be
extended to the structured H∞ problem.

3.2 Stability and performance guarantees

Stability of the symmetric system (3) implies stability of
the corresponding original system (1).

Lemma 2. (Dhingra and Jovanović (2015, Lemma 1)). Let
the symmetric part of A, As := (A + AT )/2, be Hurwitz.
Then, A is Hurwitz.

Remark 1. This is not a necessary condition; A may be
Hurwitz even if As is not.

Performance guarantees The H2 and H∞ norms of the
symmetric system are upper bounds on the H2 and H∞
norms of the original system.

Proposition 3. [Dhingra and Jovanović (2015, Cor. 3)]
When the systems (1) and (3) are stable, the H2 norm
of the general system (1) is bounded from above by the
H2 norm of the symmetric system (3).

We show that an analagous bound holds for the H∞.

Proposition 4. When the systems (1) and (3) are stable,
the H∞ norm of the general system (1) is bounded from
above by the H∞ norm of the symmetric system (3).

Proof. From the bounded real lemma (Dullerud and
Paganini, 2013), the H∞ norm of the general system (1)
is less than γ if there exists a P � 0 such that,

ATP + PA + I + γ−2P 2 ≺ 0.

From Proposition 1, for the symmetric system (3), γ >
σmax(A−1

s ). Taking P = γI for any γ > σmax(A−1
s ) and

substituting it into the above linear matrix inequality
(LMI) applied to the symmetric system (3) yields,

2γAs + 2I ≺ 0.

Since As is Hurwitz, As ≺ 0. Since γ > −λmax(A−1
s ),

γ−1 < −λmin(As), so As ≺ −γ−1I. Therefore the LMI is
satisfied. Since Aa = −AT

a , setting P = γI implies,

ATP + PA = 2γAs

therefore substituting P into the bounded real lemma LMI
for the general system (1), where A = As +Aa, yields,

ATP + PA + I + γ−2P 2 = 2γAs + 2I ≺ 0.

3.3 Approximation bounds

In addition to being an upper bound, the H2 and H∞
norms of the symmetric (3) and full (1) systems are close
when A is dominated by the symmetric component.

Proposition 5. [Dhingra and Jovanović (2015, Prop. 4)]
Let An be a normal matrix. The O(ε) correction to the
H2 norm of the system

ẋ = Anx + d

from an O(ε) antisymmetric perturbation Aa is zero.

We show that a similar property holds for the H∞ norm.

Proposition 6. Let As be a symmetric matrix. The O(ε)
correction to the H∞ norm of the system

ẋ = Asx + d

from an O(ε) antisymmetric perturbation Aa is zero.

Proof. From Proposition 1, the H∞ norm of the symmet-
ric system is given by σmax(−A−1

s ). The maximum singular
value of a matrix is equivalent to,

σmax(X) = sup
‖v‖2≤1,‖w‖2≤1

vTXw.

Since As is symmetric, w = v. Taking an O(ε) antisym-
metric perturbation Aa to the above expression,
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σmax(−(As + εAa)−1) ≈ −vTA−1
s v + εvTA−1

s AaA
−1
s v.

Since Aa is antisymmetric,
〈
A−1

s vvTA−1
s , Aa

〉
= 0.

4. COMPUTATIONAL ADVANTAGES FOR
STRUCTURED PROBLEMS

Structured control is often of interest for large-scale sys-
tems. As such, the computational scaling of algorithms
used to compute optimal controllers is very important.
In this section, we identify a class of systems which are
amenable to scalable distributed algorithms.

When A and K(v) are always simultaneously block-
diagonalizable, the dynamics of the system can be ex-
pressed as the sum of independent subsystems. Define
x̂ := Px and let P be a unitary matrix such that,

˙̂x = (Â + K̂(v))x̂

where
Â := PAPT , K̂(v) := PK(v)PT ,

and, for any choice of v, Â + K̂(v) = blkdiag{Â11 +

K̂11, · · · , ÂNN + K̂NN} is block-diagonal with N blocks
of size n× n each.

For problems of this form, computing optimal control
strategies is much more efficient in the x̂ coordinates
because the majority of the computational burden in
solving problems (4) and (5) comes from the nN × nN
LMI constraint involved in minimizing the performance
metrics J2(v) or J∞(v).

For this class of system, the H2-optimal control prob-
lem (4) can be expressed as,

minimize
v,Θi

1

2

∑
i

trace(Θi) + g(v)

subject to

[
Θi I

I −(Âs)ii + (K̂s(v))ii

]
� 0.

(6)

which is an SDP with N separate n×n LMI blocks. Since
SDPs scale with the sixth power of the LMI blocks, solving
this reformulation scales with n6 as opposed to n6N6.

Analogously, the structured H∞-optimal control prob-
lem (5) can be cast as,

minimize
v,Θi

max
i

(σmax(Θi)) + g(v)

subject to

[
Θi I

I (Âs)ii − (K̂s(v))ii

]
� 0.

(7)

One important class of system which satisfies these as-
sumptions is spatially-invariant systems. This structure
was used in (Zoltowski et al., 2014) to develop efficient
techniques for sparse feedback synthesis.

4.1 Spatially-invariant systems

Spatially-invariant systems have a block-circulant struc-
ture which is block-diagonalizable by a Discrete Fourier
Transform (DFT). A spatially-invariant system can be
represented by N subsystems with n states each. The state
vector x ∈ RnN is composed of N subvectors xi ∈ Rn

which denotes the state of the subsystem. The matrix

A ∈ RnN×nN is block-circulant with blocks of the size
n× n. For example, when N = 3,

A =

[
A0 A1 A−1

A−1 A0 A1

A1 A−1 A0

]
where the blocks {A0, A−1, A1} ∈ Rn×n.

It was shown in (Bamieh et al., 2002) that the optimal
feedback controller for a spatially-invariant system is it-
self spatially-invariant. Assuming that the optimal sparse
feedback controller is also spatially-invariant is equivalent
to assuming that K(v) is block-circulant. Block circulant
matrices are block-diagonalizable by the appropriate DFT.
Let the block Fourier matrix be

Φ := ΦN ⊗ In,
where In is the n × n identity matrix, ΦN is the N ×N
discrete Fourier transform matrix, and ⊗ represents the
Kronecker product. By introducing the change of variables
x̂ := Φx, where

x̂ =
[
x̂T1 · · · x̂TN

]T
,

and x̂i ∈ Rn, the original system’s dynamics can be
expressed as N independent n× n subsystems,

Â = blkdiag{Â11, Â22, Â33}
Consequently, the optimal structured control problems (4)
and (5) can be cast as the more formulations (6) and (7).

5. EXAMPLES

5.1 Directed Consensus Network

In this example, we illustrate the utility of the approach
described in Section 3. Consider the network dynamics
given by a directed network as described in Section 2.1.1,

ẋ = −(L + Ediag(v)ET )x

where L is a directed graph Laplacian,K(v) = Ediag(v)ET

represents the addition of undirected links, v is a vector
that contains weights of these added links, and the inci-
dence matrix E describes which edges may be added or
altered. The regularization on v is given by,

g(v) = ‖v‖22 + γ
∑
i

|vi|

where the quadratic term limits the size of the edge
weights, the `1 norm promotes sparsity of added links, and
γ > 0 parametrizes the importance of sparsity.

For this concrete example, the network topology is given
by Figure 1. The potential added edges can connect the
following pairs of nodes: (1) − (2), (1) − (3), (1) − (5),
(1)− (6), (2)− (5), (2)− (6), (3)− (6), and (4)− (5).

Controllers were designed by solving problems (4) and (5)
for the symmetric version of the network over 50 log-
distributed values of γ ∈ [10−4, 1]. The closed-loop H2

and H∞ norms obtained by applying these controllers to
the symmetric and original systems are shown in Fig. 2.
Fig. 1 also shows which edges were added for γ = 1.

5.2 Swift-Hohenberg Equation

Here we illustrate the utility of the block-diagonalization
we describe in Section 4. Consider a particular realization
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Fig. 1. Directed network (black solid arrows) with added
undirected edges (red dashed arrows). Both the H2
and H∞ optimal structured control problems yielded
the same set of added edges. In addition to these
edges, the controllers tuned the weights of the edges
(1)− (3) and (1)− (5).

Fig. 2. H2 and H∞ performance of the closed-loop sym-
metric system and the original system subject to a
controller designed at various values of γ.

of the Swift-Hohenberg equation (Swift and Hohenberg,
1977),

∂tψ(t, x) = β ψ(t, x) − (1 + ∂xx)2 ψ(t, x) + v(x)ψ(t, x)

where β ∈ R, and ψ(t, ·), v(·) ∈ L2(−∞,∞), and v(x) is
a spatially-invariant feedback controller which is to be de-
signed. A finite dimensional approximation of this system
can be obtained by using the differentiation suite from
(Weideman and Reddy, 2000) to discretize the problem
into N points and approximating the infinite domain with
periodic boundary conditions over the domain L2[0, 2π]. A
sparse H2 feedback controller v(x) can then be identified
by solving problem (4).

We contrast this method with the approach we advocate in
Section 4, where we use the DFT to decompose the system
into N first-order systems corresponding to eigenfunctions
of the Swift-Hohenberg equation and solve problem (6).

The state vector takes the form of ψ(x) evaluated at grid
points in x where the dynamics are given by,

ψ̇ = (A − V )ψ

where, A = βI − (I +D2)2. Here D is a discrete differen-
tiation matrix from (Weideman and Reddy, 2000), and V
is the circulant state feedback matrix.

Using the DFT over x, the Swift-Hohenberg equation can
be expressed as a set of independent first-order systems,

˙̂
ψx = (ax − v̂x)ψ̂x

where ax := β − (1 − κ2
x)2, and the new coordinates are

ψ̂ := Pψ, P is the DFT matrix, κx is the wavenumber
(spatial frequency), and v̂ represents V in the Fourier
space; i.e., V = PT diag(v̂)P .

We take the regularization term to be

g(v) = ‖V ‖2F + γ‖V ‖1
where ‖X‖1 :=

∑
ij |Xij | is the elementwise `1 norm and

γ is a parameter which specifies the emphasis on sparsity
relative to performance.

For the H2 problem, the regularized optimal control prob-
lem is of the form of (4) with Ks(v) = V and V is
circulant. In that formulation, the problem is an SDP with
one N ×N LMI block. In the Fourier space, the problem
can be expressed as (6), which takes the particular form,

minimize
v̂

1

2

∑ 1

−ax + v̂x
+ g

(
PT diag(v̂)P

)
subject to − ax + v̂x ≥ 0

which does not require the large SDP constraints in (4).

We solved the regularized H2 optimal control problem by
solving the general formulation (4) and the more efficient
formulation (6) for β = 0.1, γ = 1 and N varying from 5
to 51 using CVX, a general purpose convex optimization
solver (Grant and Boyd, 2013).

Taking advantage of spatial invariance yields a significant
computational advantage, as can be seen in Figure 3.
Although both expressions of the problem yield the same
solution, solving the realization in (6) is much faster and
allows us to examine much larger problem dimensions.
In Figure 4, we show the spatially-invariant feedback
controller for one point in the domain, i.e., one row of
V , computed for N = 101 at γ = 0, γ = 0.1, and γ = 10..

Fig. 3. Computation time for the general formulation (4)
(blue ◦) and that which takes advantage of spatial
invariance (6) (red ∗).

Fig. 4. Feedback gain v(x) for the node at position x = 0,
computed with N = 51 and γ = 0 (black solid),
γ = 0.1 (blue dashed), and γ = 10 (red dotted).

6. FURTHER INVESTIGATION

We have provided a convex methodology for structured
H2 and H∞ controller design and a procedure to gain
computational efficiency for spatially invariant systems
and problems with similar forms. Ongoing work will focus
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on deriving a bound on the error between a general linear
system and the system corresponding to its symmetric
component.
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of structured dynamic output-feedback controllers for
interconnected systems. International Journal of Con-
trol, 84(12), 2081–2091.

Swift, J. and Hohenberg, P.C. (1977). Hydrodynamic fluc-
tuations at the convective instability. Physical Review
A, 15(1), 319.

Weideman, J.A.C. and Reddy, S.C. (2000). A MATLAB
differentiation matrix suite. ACM Transactions on
Mathematical Software, 26(4), 465–519.

Wu, X., Dörfler, F., and Jovanović, M.R. (2014). Analy-
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