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a b s t r a c t

This review article describes the design of static controllers that achieve an optimal tradeoff between
closed-loop performance and controller structure. Our methodology consists of two steps. First, we
identify controller structure by incorporating regularization functions into the optimal control problem
and, second, we optimize the controller over the identified structure. For large-scale networks of

physical and controller layers and the regularization term penalizes the number of communication links.
Although structured optimal control problems are, in general, nonconvex, we identify classes of convex
problems that arise in the design of symmetric systems, undirected consensus and synchronization
networks, optimal selection of sensors and actuators, and decentralized control of positive systems.
Examples of consensus networks, drug therapy design, sensor selection in flexible wing aircrafts, and
optimal wide-area control of power systems are provided to demonstrate the effectiveness of the fra-
mework.

& 2016 European Control Association. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Large-scale networks of dynamical systems are ubiquitous in
modern applications. Systems of this type arise in applications
ranging from distributed power generation, to deployment of
teams of robotic agents, to control of segmented mirrors in
extremely large telescopes, to control of fluid flows around wind
turbines and vehicles. One of the major challenges in the study of
networks of dynamical systems is the development of analytical
and computational methods for their tractable analysis and design.

The optimal control of linear systems with quadratic performance
measures, such as LQR, H2, and H1, is a cornerstone of systems
theory. This framework provides a systematic way to balance closed-
loop performance, robustness, and control effort. In the conventional
formulation, an optimal controller is designed to minimize some
measure of the amplification from the sources of excitation to a
regulated output which penalizes both the state and the control effort.
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These optimal controllers are typically implemented in a centralized
fashion, which is not feasible in many emerging applications.

Recent technological advances have allowed the individual com-
ponents of large-scale systems to be equipped with their own sen-
sing, actuation, communication, computation, and decision making
capabilities. Advances in Micro-Electro-Mechanical-Systems (MEMS)
have enabled the development of arrays of sensors and actuators that
can interact with one another. Strings of vehicular platoons,
unmanned aerial vehicles (UAVs), and robotic agents constitute
another set of examples of large-scale autonomous systems [13,79].
In many of these applications, the scale of the problem, constraints
on computing and communication resources, and the wide-spread of
sensing and actuating capabilities pose additional requirements on
controller complexity. Typically, these cannot be addressed using
tools from standard optimal control theory. For example, a dense
state-feedback controller resulting from the LQR framework would
impose a prohibitive communication burden in large-scale networks.
This is because forming every control input requires information
from every subsystem in the distributed plant. The cost of creating
and maintaining communication links makes such an all-to-all
topology infeasible in most large-scale and distributed systems.

This has motivated the design of structured (both decentralized
and distributed) controllers. Early efforts have centered on the design
of decentralized strategies [97,101] and, during the last fifteen years,
the emphasis has shifted to the design of distributed controllers
served.
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[2,21,111,20,60–65,102,3,96,8,99,106,36,72,71,100,85,42,112,82]. Two
major issues have emerged: the identification of convex classes of
structured control problems and the optimal control design under a
priori specified structural constraints.

Optimal control problems are often reformulated using Youla
parameterization [44,34]. The mapping from the controller to the
Youla parameter is nonlinear which typically compromises con-
vexity of the structural constraints in the distributed setup. It is thus
important to identify subspaces which remain invariant under this
nonlinear mapping for distributed systems. In [111,3], the subspaces
of cone and funnel causal systems have been introduced; these
describe how information from every controller propagates through
the distributed system. For spatially invariant systems, the design of
quadratically optimal controllers can be cast into a convex problem
if the information in the controller propagates at least as fast as in
the plant [111,3]. A similar but more general algebraic character-
ization of the constraint set was introduced and convexity was
established under the condition of quadratic invariance in [96].
Other classes of convex distributed control problems include par-
tially nested systems [52,109,110], poset-causal systems [99,100],
and positive systems [41,107,12,35,94,17,95].

Since most of these convex formulations are expressed in terms
of the impulse response parameters, they do not lend themselves
easily to state-space characterization. Apart from very special
instances, the optimal distributed design problem remains challen-
ging. For poset-causal systems, explicit Riccati-based solutions for
the optimal decentralized state-feedback problem were obtained in
[99,100]. For a two-player problemwith block-triangular state-space
matrices, the optimal decentralized output-feedback solution was
recently provided in [64,65]. Characterizing the structural properties
of optimal distributed controllers is another important challenge. For
spatially invariant systems, the quadratic optimal controllers are also
spatially invariant and the information from other subsystems is
exponentially discounted with the distance between the controller
and the subsystems [2]. For systems on graphs, this spatially
decaying property was studied in [83,84] and it motivates the search
for inherently localized controllers.

Recently, it has been demonstrated that the design of controller
architectures can have a more profound impact on the closed-loop
performance than the optimal design under a given pre-specified
architecture [1]. In [39,68], tools and ideas from control theory,
optimization, and compressive sensing have been combined to
systematically address the challenge of designing controller
architectures. The proposed approach introduces regularized ver-
sions of standard optimal control problems and aims to strike a
balance between closed-loop performance and controller com-
plexity. For example, when the state vector and control inputs can
be partitioned into subvectors that correspond to separate sub-
systems, promoting sparsity of the feedback gain matrix limits
information exchange between the physical system and the con-
troller. Sparse controller architectures can be designed by aug-
menting standard quadratic performance measures with sparsity-
promoting penalty functions which serve as measures of con-
troller complexity. Such an approach has received much recent
attention [39,68,98,37,73,74,76,75].

Alongside the sparse feedback synthesis, the critical question of
sensor and actuator selection has been recently considered in
[92,28]. Although, in general, finding the solution to this problem
requires an intractable combinatorial search, by drawing upon
recent developments in sparse representations this problem can
be cast as a semidefinite program (SDP). Moreover, it is also of
interest to study problems where it is desired to optimize a linear
function of some design variable to which regularization or convex
constraints are applied [117]. This broader framework covers a
wide variety of problems ranging from wide-area and distributed
PI control of power networks [32,33,114,115], to combination drug
therapy for HIV treatment [24], to edge addition [48–50] and
leader selection [91,43,69,16,23] in consensus networks.

Several recent efforts have focused on establishing convexity
for classes of these problems and on developing efficient algo-
rithms for optimal controller design for both convex and non-
convex problems. Convex structured optimal control problems
include symmetric modifications to symmetric linear systems
[39,25,29], diagonal modifications to positive systems [24,23],
optimal sensor and actuator selection [92,28], and edge addition to
undirected consensus [48–50] and synchronization [40] networks.
Algorithmic developments have employed alternating direction
method of multipliers [68,28], proximal gradient and Newton
methods [50], as well as first- and second-order method of mul-
tipliers [26,27] to efficiently perform identification of controller
structure and structured feedback synthesis.

Our presentation is structured as follows. In Section 2, we
provide motivation and background and highlight challenges that
arise in structured feedback synthesis. In Section 3, we formulate
the problem of managing controller complexity via regularization
and describe different sparsity-promoting regularizers. In Section
4, we introduce generalized problem formulation and summarize
several classes of regularized optimal control problems which
admit convex characterizations. These include optimal design of
sparse symmetric systems, sparse synthesis of undirected con-
sensus and synchronization networks, optimal selection of sensors
and actuators, selection of influential nodes in the networks of
single-integrators, and combination drug therapy design for HIV
treatment. In Section 5, we provide examples to illustrate the
framework and its utility. We conclude with remarks in Section 6.
2. Structured optimal control

The notion of controller structure can have different connota-
tions. To motivate the study of structured optimal control, we
begin with a discussion of networks of dynamical systems. Tradi-
tional design techniques, such as LQR, H2, and H1, require cen-
tralized implementation of the resulting controllers. For large-
scale systems, the computational and communication costs asso-
ciated with such a centralized implementation may be prohibi-
tively high. It is thus of interest to design controllers with dis-
tributed structure and sparse communication topologies. We first
draw a connection between sparsity of the feedback gain matrix
and the induced communication topology, and then highlight
challenges that arise in the design of structured state-feedback
controllers.

2.1. Motivation and background

We study linear time-invariant systems

_x ¼ A xþB1 dþB2 u ð1Þ
where x is the state, d is the disturbance, and u is the control. To
motivate our developments, let us for a moment assume that (1)
contains N individual subsystems, each with a local state and
control inputs, and let B2 be a block-diagonal matrix. By parti-
tioning the state and control input vectors into subvectors corre-
sponding to each subsystem, x ≔ ½xT1 ⋯ xTN�T and u¼ ½uT

1 ⋯ uT
N �T , we

can write the subsystem dynamics as,

_xi ¼ Aii xiþ
X
ja i

Aij xjþB1i dþB2;ii ui: ð2aÞ

The block-sparsity pattern of A determines the interaction topol-
ogy between subsystems; when Aij is zero, subsystem j has no
direct effect on the evolution of the state of subsystem i.



Fig. 1. A network of 5 dynamical systems with associated local controllers.
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With each subsystem we associate a controller that specifies
the control input ui. Standard optimal control techniques typically
induce a communication topology which requires every local
controller to have access to the state of every subsystem. In large-
scale networks of dynamical systems, this may impose significant
communication burden and implementation may be prohibitively
expensive. It is thus of interest to explore the design of feedback
laws that utilize limited information exchange within a large-scale
network.
Under linear state-feedback u¼ �Fx the dynamics (2a)
become,

_xi ¼ Aii xiþ
X
ja i

Aij xjþB1i d�B2;ii

X
j

Fij xj: ð2bÞ

Thus, the block-sparsity pattern of the feedback gain matrix F
determines the communication topology of the static controller:
forming the control input ui requires access to the states of each
subsystem j for which Fij is nonzero.



Fig. 2. Mass–spring system on a line.

Fig. 3. (a) The optimal centralized position feedback gain matrix Fp in the systemwith 50 masses. Both Fp and Fv (not shown) have almost constant diagonals (modulo edges)
and exponential off-diagonal decay. (b) Optimal centralized position gains for the middle mass n¼25. (c) Truncation of the optimal centralized position gains for the middle
mass n¼25.
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Fig. 1a illustrates a network of coupled subsystems, associated
controller topology, and the sparsity patterns of the corresponding
matrices A and F. The subsystems in the physical layer are repre-
sented by blue octagons; their interaction topology is marked by
the blue arrows and captured by the sparsity pattern of the matrix
A. Each local controller is represented by a yellow circle; the
structure of the information exchange network between the two
layers is marked by the red arrows and captured by the sparsity
pattern of the feedback gain matrix F.

In the more general setup where the local controllers are
dynamic (perhaps because they estimate the subsystem's state
rather than directly measure it), it is important to determine the
order of local controllers as well as the structure of the informa-
tion exchange network in the controller layer; see Fig. 1b for an
illustration. Recent advances have been made for particular classes
of systems [64,65], but addressing these questions in general
remains an open challenge.

2.1.1. An example
For the system with N masses shown in Fig. 2, the state vector

is determined by x¼ pT vT
� �T , where p and v are the vectors of

positions and velocities of all masses, respectively. Setting all
masses and spring constants to unity and partitioning matrices in
the state-space model (1) conformably with the partition of x
yields

A¼ 0 I

T 0

� �
; B1 ¼ B2 ¼

0
I

� �
;

where T is an N � N tridiagonal Toeplitz matrix with �2 on its
main diagonal and 1 on its first sub- and super-diagonal. We set
the state and control performance weights to Q¼ I and R¼ 10I,
respectively. In the absence of the structural constraints, the
solution to the Riccati equation yields the centralized controller
F ≔ Fp Fv

� �
with dense position and velocity feedback gain

matrices Fp and Fv,

u1ðtÞ
u2ðtÞ
u3ðtÞ
u4ðtÞ

2
66664

3
77775¼ �

n n n n

n n n n

n n n n

n n n n

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fp

p1ðtÞ
p2ðtÞ
p3ðtÞ
p4ðtÞ

2
66664

3
77775�

n n n n

n n n n

n n n n

n n n n

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fv

v1ðtÞ
v2ðtÞ
v3ðtÞ
v4ðtÞ

2
66664

3
77775:
Even though these matrices are populated with non-zero ele-
ments, the gains that are used to form control actions for individual
masses display interesting patterns. Fig. 3 illustrates the optimal
centralized position feedback gain matrix Fp in the system with 50
masses. Apart from the edges, both Fp and Fv (not shown) have
almost constant diagonals and exponential off-diagonal decay.

For spatially invariant systems, the optimal controllers with respect
to quadratic performance indices (e.g., LQR, H2, H1) are also spatially
invariant and they exponentially discount information with spatial
distance [2]. Moreover, it has been suggested that optimal controllers
for spatially decaying systems over general graphs also possess spa-
tially decaying property [83,84]. This motivates the search for inher-
ently localized controllers and suggests that localized information
exchange in the distributed controller may provide a viable strategy
for controlling large-scale systems. For example, one could search for
optimal controllers that are subject to the condition that they com-
municate only to a subset of other subsystems. However, incorporating
structural restrictions on F significantly complicates the design pro-
blem and it is difficult to provide error bounds on the deviation from
optimality if one were to truncate the information dependence of
every controller (e.g., by confining information exchange within a pre-
specified radius or by removing gains whose magnitude does not
exceed a certain threshold; see Fig. 3c for an illustration). Furthermore,
it has been recognized that the truncation of the centralized controller
could significantly compromise the closed-loop performance and even
yield a controller that does not guarantee closed-loop stability [83,68].

2.2. Structured optimal control

In what follows, we use the H2 norm to quantify the closed-
loop performance. In the centralized case, the optimal control law
for LTI systems is given by static state-feedback. Even though it is
not clear if the optimal distributed controller is also memoryless,
we use a class of static controllers to highlight some of the chal-
lenges that arise in structured control synthesis.

The closed-loop dynamics resulting from system (1) with state-
feedback controller u¼ �Fx and the performance output z are
given by

_x ¼ ðA�B2FÞ xþB1 d

z¼ Q1=2

�R1=2F

" #
x ðCLÞ



Fig. 4. The change of variables that casts the unstructured state-feedback problem
as an SDP, in general, does not preserve the structural properties of F.
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where C ≔ Q1=2 0
h iT

and D ≔ 0 R1=2
h iT

, with standard assump-
tions on stabilizability and detectability of the pairs ðA;B2Þ and
ðA;Q1=2Þ. The feedback gain matrix FARm�n is the design variable,
Q ¼QT≽0 and R¼ RT g0 are the state and control performance
weights, and the performance metric is the steady-state amplifi-
cation from the white stochastic disturbance d to the performance
output z,

JðFÞ ≔ lim
t-1

E zT ðtÞ zðtÞ� �¼ lim
t-1

E xT ðtÞQ xðtÞþuT ðtÞR uðtÞ� �
:

This quantity is determined by the square of the H2 norm and it
can be expressed as a function of the feedback gain F as

JðFÞ ¼ trace ðQþFTR FÞ X
	 


; F stabilizing

þ1; otherwise

8<
:

where X is the closed-loop controll ability gramian,

ðA�B2FÞ XþX ðA�B2FÞT þB1B
T
1 ¼ 0: ð3Þ

In the absence of the structural constraints on the matrix F, the
optimal H2 feedback gain is determined by the linear quadratic
regulator and it can be computed via the solution of the algebraic
Riccati equation. However, as we describe next, incorporating
structural restrictions on F significantly complicates the design
problem.

The design of the optimal state-feedback gain F, subject to
constraints on its sparsity pattern (equivalently, on the commu-
nication topology in Fig. 1a), has a rich history and was recently
revisited in [38,66]. Let the subspace S encapsulate these struc-
tural constraints and let us assume that there is a stabilizing FAS.
The optimal control problem of determining stabilizing FAS that
minimizes the H2 norm of the closed-loop system (CL) can be
formulated as

minimize JðFÞ
subject to F A S ðSH2aÞ

and brought into the following form:

minimize
X;F

trace ðQþFTR FÞ X
	 


subject to ðA�B2FÞ XþX ðA�B2FÞT þB1B
T
1 ¼ 0

Xg0; FAS: ðSH2bÞ

In the absence of the structural constraint FAS, a standard change
of variables [34]

Y ≔ F X ð4Þ
can be used to express the square of the H2 norm as,

JðX;YÞ ¼ trace ðQ XÞþtrace ðR YX�1 YT Þ
and the Schur complement can be employed to cast the optimal
state-feedback H2 control problem as an SDP,

minimize
X; Y ; Z

trace Q Xð Þþtrace R Zð Þ

subject to A X�B2 Yð Þþ A X�B2 Yð ÞT þB1B
T
1 ¼ 0

Z Y

YT X

� �
≽0:

Since X is positive definite, it is invertible, and the optimal cen-
tralized (i.e., unstructured) F is determined by Fc ¼ YX�1. This
centralized solution coincides with the linear quadratic regulator,
which can be explicitly determined by Fc ¼ R�1BT

2P where P is the
unique positive definite solution of the algebraic Riccati equation,
ATPþPAþQ�PB2 R

�1BT
2P ¼ 0.

The above change of variables is, in general, not suitable for
imposing structure on F. Although the constraint on the feedback
gain matrix FAS is linear and thus convex, the corresponding
constraint on X and Y is bilinear, YX�1AS. This makes it difficult to
translate the sparsity patterns of F to the sparsity patterns of X and
Y (see Fig. 4 for an illustration), thereby limiting the use of these
coordinates for structured design problems. By restricting X to be
diagonal, the sparsity structure of F coincides with the sparsity
structure of Y. However, this may introduce considerable con-
servatism in the design and may not even lead to a feasible SDP
characterization (even when the original nonconvex problem is
feasible).
3. Design of sparse controller architecture via regularization

The communication architecture S of the state-feedback con-
troller in (SH2b) is fixed and a priori specified which may impose
limits on the achievable performance. For problems where the
communication topology is not fixed, it is desirable to design a
favorable communication topology while promoting sparsity of
the communication links. To achieve this, an optimization frame-
work which augments the H2 objective function with a penalty on
the sparsity of the feedback gain matrix (i.e., the number of
communication links) was introduced in [39,68].

3.1. Structure identification

Our objective is to design controller architecture that achieves a
desired tradeoff between the quadratic performance of closed-
loop system (CL) and the sparsity of the feedback gain F. To
address this challenge we consider a regularized optimal control
problem

minimize
F

JðFÞ þ γ gðFÞ

↓ ↓
closed�loop
performance

controller
structure

ðSPÞ

where JðFÞ is the H2 norm of (CL). In contrast to (SH2b), no
structural constraints are imposed on F in (SP); instead, the
objective is to manage structure of the controller by introducing a
regularization term gðFÞ into the optimal control problem. The
non-negative regularization parameter γ encodes the emphasis on
controller structure relative to the closed-loop performance. For
γ¼0, the centralized LQR solution is obtained. As γ increases, lar-
ger emphasis is placed on obtaining the feedback gain F that
satisfies some additional structural requirements; see Fig. 5 for an
illustration.

Problem (SP) is difficult to solve directly because J is typically a
nonconvex function of F and g is convex but not differentiable.



Fig. 5. Increased emphasis on sparsity encourages sparser control architectures at
the expense of deteriorating the closed-loop performance. For γ¼0 the optimal
centralized controller Fc is obtained from the positive definite solution of the
algebraic Riccati equation. Control architectures for γ40 are determined by FðγÞ ≔
argminF JðFÞþγ gðFÞð Þ and they depend on interconnections in the distributed plant
and the state and control performance weights Q and R.

Fig. 6. Cardinality function of a scalar variable x and the corresponding absolute
value and logarithmic approximations on xA ½�1; 1�.
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While the nonlinear change of coordinates (4) yields a convex
dependence of J on X and Y, in general, it introduces a nonconvex
dependence of the regularization term g on these optimization
variables.

Introduction of an auxiliary variable to the regularized optimal
control problem (SP),

minimize
F ;G

JðFÞþγ gðGÞ

subject to F�G¼ 0

facilitates the use of splitting methods that exploit the respective
structures of J and g in (SP). In [68], the alternating direction
method of multipliers [9] was used to find a solution by iteratively
solving simpler subproblems over F and G. The F-minimization
problem is typically nonconvex but smooth; in contrast, the G-
minimization problem is non-differentiable but convex and it
often admits an explicit solution. More recently, the proximal
methods were combined with the method of multipliers to sys-
tematically address the challenge of step-size selection in the
augmented Lagrangian and provide convergence guarantees [26].

3.1.1. Sparsity-promoting regularizers
The elementwise sparsity of the feedback gain matrix F can be

promoted by incorporating the cardinality function into the opti-
mal control problem (SP),

g0ðFÞ ¼ card Fð Þ: ð5aÞ
This regularizer counts the number of nonzero elements in F and it
yields a combinatorial optimization problem (SP) whose solution
typically requires an intractable combinatorial search. A weighted
ℓ1 penalty on the individual elements FijAR of the feedback gain
matrix F,

g1ðFÞ ¼ JW○F J1 ¼
X
i;j

wij jFij j ð5bÞ

provides a convex proxy for promoting elementwise sparsity of
the matrix F [14]. Here, W is the matrix whose elements are
determined by the non-negative weights wij and ○ is the ele-
mentwise matrix multiplication. The weights wij can be selected to
place larger relative penalties on certain elements of F. Further-
more, if some information comes for free, the corresponding wij

can be set to zero. Similarly, the sum of the Frobenius norms of the
submatrices FijARmi�nj ,

g2ðFÞ ¼
X
i;j

wij JFij JF ð5cÞ

enhances sparsity at the level of submatrices [118]. Here, the
feedback gain F can be partitioned into submatrices Fij that need
not be of the same dimension, and the weights wijZ0 specify the
emphasis on sparsity of individual blocks. In particular, when it is
desired to promote the row-sparsity of F, g2 simplifies to

g3ðFÞ ¼
X
i

wi JeTi F J2 ð5dÞ

where ei is the standard ith basis vector in Rm and J � J2 is the
Euclidean norm. This penalty promotes limited use of input con-
trol channels and can thus be used as a convex proxy for optimal
selection of actuators [92,28].

The ℓ1 norm is the largest convex function that underestimates
the cardinality function on the box with edges of unit length [10];
see Fig. 6 for an illustration in the scalar case. Both the ℓ1 norm
and its weighted version are convex relaxations of cardðFÞ. On the
other hand, better approximation can be obtained with nonconvex
functions, e.g., the sum-of-logs,

g4ðFÞ ¼
X
i;j

log 1þj Fij j
ε

� �
; 0oε⪡1: ð5eÞ

The weighted ℓ1 norm attempts to bridge the difference between
the ℓ1 norm and the cardinality function. In contrast to the car-
dinality function that assigns the same cost to any nonzero ele-
ment, the ℓ1 norm penalizes more heavily the elements of larger
magnitudes. The positive weights can be chosen to counteract this
magnitude dependence of the ℓ1 norm. For example, if the weights
wij are inversely proportional to the magnitude of Fij,

wij ¼ 1=jFij j ; Fija0
wij ¼1; Fij ¼ 0

(

then there is no difference between the weighted ℓ1 norm of F and
the cardinality function of F. This scheme, however, cannot be
implemented, because the weights depend on the unknown feed-
back gain. A re-weighted algorithm that solves a sequence of
weighted ℓ1 optimization problems was proposed in [14]. In this,
sequential linearization of the sum-of-logs function is used and the
weights are determined by the solution of the optimization problem
in the previous iteration. This algorithm has provided an effective
heuristics for promoting sparsity in many emerging applications.

Additional intuition about the role of sparsity-promoting reg-
ularizers can be gained by considering a problem in which it is
desired to find the sparsest feedback gain that provides a given
level of H2 performance σ40,

minimize card Fð Þ
subject to JðFÞrσ:



Fig. 7. The solution F⋆ of the constrained problem (6) is the intersection of the constraint set C ≔ fF j JðFÞrσg and the smallest sub-level set of g that touches C. The penalty
function g is the ℓ1 norm (left); the weighted ℓ1 norm with appropriate weights (middle); and the nonconvex sum-of-logs function (right).
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Approximating cardðFÞ with a penalty function g(F) yields

minimize gðFÞ
subject to JðFÞrσ: ð6Þ
The solution to (6) is the intersection of the constraint set
C ≔ fF j JðFÞrσg and the smallest sub-level set of g that touches C;
see Fig. 7 for an illustration. In contrast to the ℓ1 norm whose sub-
level sets are determined by the convex ℓ1 ball, the sub-level sets
of the nonconvex sum-of-logs function have a star-like shape.

We note that alternative regularization terms g(F) can be
introduced to enforce the communication of only relative infor-
mation exchange in the distributed controller [116,48] or penalize
more nuanced measures of controller complexity [73–76]. Fur-
thermore, in the above framework the elements of the feedback
gain matrix were assumed to represent communication links in
the distributed controller. Recently, a more general framework
where a communication link is a linear function of the elements of
the feedback gain matrix was developed in [117]. These more
advanced regularization penalties reflect the fact that sparsity
should be enforced in a specific set of coordinates.

3.2. Polishing: back to structured optimal design

After having identified the controller architecture, we optimize
the closed-loop H2 performance over the identified structure S.
The optimal feedback gain matrix with fixed sparsity patterns FA
S is obtained by solving the structured H2 problem (SH2a). The
optimality conditions are given by

ðA−B2FÞTP þ PðA−B2FÞ ¼ −ðQ þ FTRFÞ
ðA−B2FÞX þ XðA−B2FÞT ¼ −B1B

T
1

RF−BT
2P

	 

X

h i
○ IS ¼ 0

where IS is the structural identity (under elementwise matrix
multiplication ○) of the subspace S,

fF○ IS ¼ F for FASg3 IS½ �ij ¼
1; Fij is a free variable
0; Fij ¼ 0:

(

The solution is obtained using Newton's method which employs
the conjugate gradient scheme that does not require forming or
inverting the large Hessian matrix explicitly [68].
4. Generalized problem formulation and classes of convex
problems

We next depart from the state-feedback problem and introduce
a more general setup where a design variable F specifies a matrix
K(F) which modifies the open-loop dynamics,

_x ¼ ðA�KðFÞÞ xþB1 d: ð7Þ
Here, K is a linear mapping from a finite-dimensional Hilbert space
to the space of n� n matrices. In the remainder of the paper, we
use f and F to differentiate between vector and matricial design
variables. This formulation includes the static output-feedback,
KðFÞ ¼ B2FC, diagonal modifications of open-loop dynamics,
Kðf Þ ¼ P

f kDk, where fk are scalars and Dk are given diagonal
matrices, and the design of undirected consensus networks,
Kðf Þ ¼ E diagðf Þ ET , where f is a vector of edge weights and E is the
incidence matrix of the controller graph.

Although this generalized formulation can be cast as a struc-
tured output-feedback problem, it allows us to draw a more nat-
ural connection with controller structure and it is convenient for
the development of optimization algorithms. To illustrate these
points, we first provide several examples that arise in applications
and then summarize classes of problems that admit convex char-
acterizations. These include optimal design of sparse symmetric
systems, optimal selection of sensors and actuators, design of
diagonal modifications to positive systems, and sparse synthesis of
consensus and synchronization networks.

4.1. Applications

4.1.1. Optimal edge addition in consensus networks
Reaching consensus via distributed information exchange

across a network has garnered much recent attention [79] with
applications ranging from social networks [22,47], to distributed
computing networks [19,7], to cooperative control of vehicular
formations [53,88,80,104,15,105,67].

A consensus network consists of n nodes which update their
states using distributed averaging with their neighbors,

_xi ¼
X
j

lijðxj�xiÞþdi

where the edge weight lij is nonzero if node j is connected to node
i and di is a stochastic disturbance. The aggregate dynamics can be
written as,

_x ¼ �L xþd

where L is a weighted directed graph Laplacian. If the graph is
connected and balanced, the unforced network achieves con-
sensus. In the presence of white stochastic disturbances, the node
values experience a random walk around the network average.

The problem of adding edges to minimize the steady-state var-
iance amplification of stochastically forced consensus networks is
equivalent to minimizing the H2 norm of the closed-loop system,

_x ¼ � LþKðf Þð Þxþd

z¼ Q1=2

�R1=2 Kðf Þ

" #
x

where f is a vector of edge weights, and K(f) is the controller
graph Laplacian. For undirected networks, Kðf Þ ¼ E diagðf ÞET
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where E is the incidence matrix of the controller graph. For
directed networks, Kðf Þ ¼Pi;jf ijEij where fij is an edge weight
and EijARn�n is a given matrix associated with a directed edge
from j to i. All of the entries of this matrix are zero apart from
the iith and ijth entries which are equal to 1 and �1, respec-
tively. Since the average mode is marginally stable, the state
penalty Q must have an eigenvalue at zero with the corre-
sponding eigenvector of all ones, Q 1¼ 0, and it has to be posi-
tive definite on the orthogonal complement of the subspace
spanned by 1, Qþð1=nÞ 11T g0. For example, Q ¼ I�ð1=nÞ 11T
penalizes mean-square deviation from the network average.

The regularization term can be used to impose additional
requirements on the closed-loop network. The added edges may
be constrained to be undirected, balanced, or be drawn from a set
of feasible edges. Regularization can also be used to promote
sparsity in the given set of edge weights or impose additional
structural properties.

4.1.2. Optimal design of networks of second order systems
In networks of second order systems,

_x ¼
0 I

A21 A22

" #
�B2 KðFÞ C

 !
xþB1 d ð8Þ

the design of K(F) has several interesting interpretations. When (8)
represents a system of masses connected by springs and dampers,
x ≔ pT vT

� �T is the vector of positions and velocities, whereas A21

and A22 account for spring and damper connections, respectively.
In the system shown in Fig. 2, each mass is connected to its
immediate neighbors via a spring and there is no damping. This
implies that A21 is a tridiagonal matrix and that A22 ¼ 0. This for-
mulation naturally extends to masses connected by networks of
springs and dampers and has been recently used for control-
oriented modeling of civil engineering structures [108].

System (8) can be also used to model formations of vehicles,
networks of coupled LC oscillators, and the linearized dynamics of
the swing equation. For the vehicular formations, A21 ¼ 0 and
A22 ¼ �κI, where κZ0 is the linearized drag coefficient per unit
mass. For the LC oscillators, A21 is a diagonal matrix and A22 is the
graph Laplacian of conductive links between the oscillators. For
the linearized swing equation, which models the evolution of
generator rotor angles in power networks, the matrix A21 provides
the coupling between generators and A22 is a diagonal matrix.

For B2 ¼ ½0 I�T , C¼ I, and KðFÞ ¼ F we recover the standard state-
feedback problem. Similarly, for C ¼ ½I 0� or C ¼ ½0 I�, we obtain the
static-output feedback problem in which the design variable KðFÞ ¼
F only modifies elements of the matrices A21 or A22, respectively.
The setup in which the designer only has the ability to add spring-
like links between the nodes amounts to setting B2 ¼ ½0 I�T , C ¼ ½I 0�,
and Kðf Þ ¼ E diagðf ÞET in (8). This situation arises in the design or
tuning of spring constants in flexible structures [46,86] and in the
introduction of additional relative angle information exchange in
power networks [114]. Here, the matrix K (f) represents the added
structural coupling or coupling between the generator angles. In
contrast, the setup in which the designer can add resistive or
damping links between the nodes, e.g., when connecting LC oscil-
lators by resistors [40], can be recovered by setting B2 ¼ ½0 I�T ,
C ¼ ½0 I�, and Kðf Þ ¼ E diagðf ÞET in (8).

4.1.3. Diagonal modifications of linear systems
We next describe two classes of problems in which the system

dynamics (7) is modified in a fully decentralized fashion,

Kðf Þ ¼
X
k

f k Dk

where Dk are given diagonal matrices and fk are scalar design
variables.
Combination drug therapy design for HIV treatment
The replication, mutation, and drug treatment dynamics of a

population of distinct HIV mutants can be modeled as a positive
system [51,56],

_x ¼ A�
X
k

f k Dk

 !
xþB1 d

z¼ C x ð9Þ
where A is a Metzler matrix (all off-diagonal elements are non-
negative), B1 and C are matrices with nonnegative entries, the
matrices Dk are diagonal, and the scalars fk are the design vari-
ables. Positive systems are systems for which the state x(t) is
nonnegative for all times when the initial condition and dis-
turbances are nonnegative [41]. Since mutation rates cannot be
negative, the combination drug therapy problem obeys these
assumptions. Here, the ith component of the state vector x
represents the population of the ith HIV mutant, the diagonal
elements of A represent the replication rates of the mutants, and
each off-diagonal element Aij represents the rate of mutation from
mutant j to mutant i. Each element fk of the design variable f
represents the dose of the kth drug and the iith entry of the
diagonal matrix Dk specifies how efficiently drug k kills the ith HIV
mutant.

Leader selection in consensus networks
Controllability of networks has recently emerged as an impor-

tant paradigm in network science [93,70,18,90]. In this, it is
important to identify the set of nodes through which the network
is easily influenced. It has been shown that the so-called leader
selection problem can be used as a proxy for identifying important
nodes in the network [16]. Furthermore, in some applications, it is
possible to augment relative information exchange between the
nodes in the consensus network with absolute information at
certain nodes [91,43,69,16,23]. For example, in vehicular forma-
tions where each vehicle measures relative distance from its
neighbors via ranging devices, absolute information can be
acquired by equipping certain vehicles with GPS devices.

In such a setup, the consensus dynamics are modified to,

_xi ¼
X
j

lij ðxj�xiÞ� f i xiþdi

where f i40 if the ith node is the leader and fi¼0 otherwise. By
taking A¼ �L and Dk ¼ ekeTk in (9), where L is the graph Laplacian
of the network and ek is the standard kth unit vector in Rn, we
recover the leader selection problem.

4.2. Classes of convex problems

The design of F in this generalized formulation can be chal-
lenging. Even in the absence of structural constraints and reg-
ularizers, the change of variables from F to (X,Y) discussed in
Section 2.2 is not always possible because the mapping K is not
necessarily invertible. Furthermore, even determining stabiliz-
ability for this problem is, in general, NP hard; this follows from
the inclusion of static output-feedback as a special case [45].

These challenges motivate the identification of classes of con-
vex problems so that stabilizability can be established, the ‘cen-
tralized’ solution can be identified, and globally optimal solutions
of the regularized and structured control problems can be effi-
ciently computed.

4.2.1. Optimal design of symmetric systems
For symmetric systems, the H2 norm can be expressed as a

convex function of F [25]. When B1 ¼ I, A and K(F) are symmetric,
and A�KðFÞ is Hurwitz, the controllability gramian of system (7)



Fig. 8. Equivalence between the row-sparsity of F and the row-sparsity of Y ≔ FX.
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can be explicitly expressed as,

X ¼ �1
2

ðA�KðFÞÞ�1:

For the regulated output

z¼ Q1=2

�R1=2KðFÞ

" #
x;

the H2 norm is determined by

JðFÞ ¼ 1
2

trace QþKT ðFÞR KðFÞ
	 


KðFÞ�Að Þ�1
	 


:

Through the use of the Schur complement, the optimal control
problem can be cast as an SDP,

minimize
F ;Z

1
2

trace ðZÞ

subject to
Z

Q1=2

�R1=2 KðFÞ

" #

ð�ÞT KðFÞ�A

2
664

3
775≽0 ð10Þ

and, since F remains as an optimization variable, sparsity-
promoting or other convex regularizers can be readily included
in the problem formulation. For small problems, the resulting SDP
formulation can be solved efficiently using available general-
purpose solvers and for larger problems customized algorithms
can be developed. Although symmetric systems represent a lim-
ited class of problems, stability guarantees and performance
bounds for non-symmetric systems have been recently derived
using the symmetric components of matrices A and K(F) [25,29].

Optimal design of edges in undirected consensus networks
For the problem of adding edges to an undirected consensus

network with graph Laplacian L¼ LT , we have A¼ �L, B1 ¼ I, and
Kðf Þ ≔ E diag ðf Þ ET . Here, K(f) is the graph Laplacian of the con-
troller, E is the incidence matrix of the controller graph, f is a
vector of the added edge weights, and the objective is to minimize
variance amplification of the closed-loop network. As in Section
4.2.1, the nullspace of Q is 1 and Q is positive definite on 1? . Since
the matrix LþKðFÞ has an eigenvalue at 0, the resulting SDP has a
slightly different form relative to (10),

minimize
f ;Z

1
2

trace ðZÞþγ
X
i

wi j f i j

subject to
Z

Q1=2

� R1=2 E diag ðf Þ ET
" #

ð�ÞT LþE diag ðf Þ ET þð1=nÞ 11T
�

3
775≽0:

2
664 ð11Þ

To promote a limited number of added edges, the regularization
term is taken to be an ℓ1 penalty on the edge weights. Note that
this formulation allows for the introduction of arbitrary convex
regularizers on f. For small problems, standard SDP solvers can be
used to compute the optimal solution. For large networks, efficient
customized algorithms that exploit the structure of the sparsity-
promoting undirected edge addition problem have been recently
developed in [48–50].

4.2.2. Optimal actuator and sensor selection
The design of an optimal state-feedback controller which uses a

limited number of available actuators can be cast as a convex
problem. When the ith row of the feedback gain matrix F is
identically equal to zero, the ith control input is not used. Thus,
obtaining a control law which uses only a subset of available
actuators can be achieved by promoting row-sparsity of F.

Although, as noted in Section 2.2, it is in general difficult to
establish the relation between the sparsity structures of F and
Y ≔ FX, the row-sparsity structure represents a notable exception.
This is because the ith row of F is equal to zero if and only if the ith
row of Y is equal to zero [92]; see Fig. 8 for an illustration. Thus, by
augmenting the H2 performance metric with a sparsity-promoting
penalty on the rows of Y, γ

P
i wi JeTi Y J2, the problem of optimal

actuator selection can be formulated as

minimize
X;Y

trace ðQ XÞþtrace ðR YX�1 YT Þþγ
Xm
i ¼ 1

wi JeTi Y J2

subject to A X�B2 Yð Þþ A X�B2 Yð ÞT þB1B
T
1 ¼ 0

Xg0

and cast as an SDP via the use of Schur complement and the
proper treatment of the regularization term. Since general SDP
solvers scale poorly with problem dimension, a customized algo-
rithm based on ADMM was developed in [28] to exploit problem
structure and efficiently compute the optimal solution. It is also
worth noting that the problem of designing a Kalman filter which
uses a limited number of available sensors is dual to the problem
of optimal actuator selection and it thus admits similar convex
characterization [28].

4.2.3. Diagonal modifications of positive systems
Leveraging recent results on diagonal modifications to positive

systems [94,17], the convexity of the H2 and H1 norms of (9) with
respect to the vector f (with elements fk) was established in [24].
This problem is not SDP representable and its solution is found via a
customized algorithm developed in [24]. This formulation does not
include a traditional measure of the control effort in the perfor-
mance output z. It instead limits the control effort via introduction
of suitable regularization terms on the design variable f [24].

In many applications, penalizing f directly is physically mean-
ingful. Regularization of f in the drug therapy problem can directly
impose clinically relevant constraints including budget of drugs,P

f krT , or maximum drug doses, f krTk. Convex constraints can
also be used to promote logical conditions arising from drug–drug
interactions, such as mutual exclusivity of drugs j and i via
f iþ f jrT , or drug j requiring drug i via f jr f i [58]. For the leader
selection problem, regularization of f can promote identification of
a sparse set of leaders or limit the feedback gains on the absolute
position that the leaders are using.

4.2.4. Synchronization of oscillators
The problem of coupling oscillators with the same resonance

frequency ω via a network of conductances,

_x ¼
0 I

�ω2I �E diag ðf Þ ET
" #

xþd

can be cast as an SDP; see [40] for details. This structure arises in
applications that include synchronization of power networks and
Kuramoto oscillators [54,31,30].
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5. Examples

We next provide several examples to illustrate the utility of our
framework. The undirected consensus network is from [49], the
sensor selection example is from [28], the wide-area control of a
power networks has been studied in [113], and the combination
drug therapy example is from [24]. Additional examples, along
with MATLAB source codes, are available at www.ece.umn.edu/
users/mihailo/software/lqrsp/.
5.1. Disconnected consensus network

An undirected consensus network is generated from n¼50
randomly distributed nodes in 10�10 unit box. Two nodes are
connected with unit edge weight if the Euclidean distance
between them is less than 2 units. The example we present here is
not connected, and at least two additional undirected edges are
required for this network to achieve consensus.

We approach the undirected edge addition problem described
in Section 4.2.1 for a controller graph with m¼1094 potential
edges. This is achieved by imposing weighted ℓ1 regularization on
the vector of edge weights for 200 logarithmically spaced values of
γA ½10�3; 2:5� using the path-following iterative re-weighted
algorithm as a proxy for inducing sparsity [14]. We set the
weights to be inversely proportional to the magnitude of the
solution f at the previous value of γ and initialize weights for γ ¼
10�3 using the optimal centralized vector of the edge weights.
Topology identification is followed by the polishing step that
computes the optimal edge weights.
Fig. 9. Topologies of the plant (blue lines) and controller graphs (red lines) for an unweig
references to color in this figure caption, the reader is referred to the web version of th
Fig. 9 illustrates topologies of the plant (blue lines) and the
controller (red lines) graphs for four values of γ. As expected,
larger values of γ yield sparser controller graphs. Since the plant
graph has three disconnected subgraphs, at least two edges in the
controller are needed to make the closed-loop network connected.

Fig. 10 shows that the number of nonzero elements in the
vector of the edge weights f decreases and that the closed-loop
performance deteriorates as γ increases. In particular, Fig. 10c
illustrates the optimal tradeoff curve between the H2 performance
loss (relative to the optimal centralized controller) and the sparsity
of the vector f. For γ ¼ 2:5, only four edges are added. Relative to
the optimal centralized vector of the controller edge weights fc, the
identified sparse controller in this case uses only 0.37% of the
edges, i.e., cardðf Þ=cardðf cÞ ¼ 0:37%, and achieves a performance
loss of 82.13%, ðJ� JcÞ=Jc ¼ 82:13%. Here, fc is the solution to the
sparsity-promoting optimal control problem with γ¼0 and the
pattern of non-zero elements of f is obtained by solving the pro-
blem formulated in Section 4.2.1 with γ ¼ 2:5 via the path-
following iterative re-weighted algorithm.

5.2. Sensor selection for flexible aircraft

One barrier in reducing aircraft weight in order to improve fuel
efficiency is that lighter airframes are more flexible and thus sus-
ceptible to vibrational instabilities [11]. These instabilities, known as
flutter, were behind the famous Tacoma Narrows Bridge collapse
and have been identified as the likely cause of the loss of NASA's
Helios Prototype aircraft [87].

Recent work has sought to approach this problem by actively
damping flutter instabilities [4]. Since active control requires
hted random network with three disconnected subgraphs. (For interpretation of the
is paper.)

http://www.ece.umn.edu/users/mihailo/software/lqrsp/
http://www.ece.umn.edu/users/mihailo/software/lqrsp/


Fig. 10. (a) Sparsity level; (b) performance degradation; and (c) the optimal tradeoff curve between the performance degradation and the sparsity level of optimal sparse f
compared to the optimal centralized vector of the edge weights fc. The results are obtained for unweighted random disconnected plant network with topology shown in
Fig. 9.

Fig. 11. Body Freedom Flutter flexible wing testbed aircraft.

Fig. 12. (a) Number of sensors as a function of the sparsity-promoting parameter γ; and (b) performance comparison of the Kalman filter associated with the sets of sensors
resulting from the regularized sensor selection problem and from truncation.
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reliable detection of instabilities, selection of sensors is an
important challenge. For the Body Freedom Flutter test aircraft
shown in Fig. 11 [81], we use the dual formulation to the actuator
selection approach described in Section 4.2.2 in conjunction with
iterative re-weighting algorithm to select sparse sets of sensors.
Fig. 12 shows the number of sensors as a function of the sparsity-
promoting parameter γ and the performance of Kalman filter with
the limited sets of sensors [28].

We compare the performance of the Kalman filter corre-
sponding to the sensors selected by our approach to the Kalman



M.R. Jovanović, N.K. Dhingra / European Journal of Control 30 (2016) 76–91 87
filter associated with sensors selected by truncation. For the
truncation approach, the Kalman gain matrix corresponding to a
set of sensors was computed. The sensor corresponding to the row
with the lowest ℓ2 norm was discarded and the Kalman gain was
recomputed for the new set of sensors. This process was repeated
iteratively from the full set of sensors to a set of two sensors.
Clearly, the regularized sensor selection algorithm described in
15

23
5

12

13

14

16

7

6

9

8 1

11

10

4

7
23

6
22

4

5
3

20

19
68

21

24

37

27
262829

9

62

65

66
67

63

64

52
55

2

58

57

56

59

60

25

8 1

54
53

47

30

61

36
17

13

12

11

32

33

34 35
45

44
43

39

51

50
18
16

38

10
31

46

49

48 40

41

14

15

42

NETS
NYPS

AREA 3

AREA 4

AREA 5

Fig. 13. NETS–NYPS test system.

Fig. 14. Sparsity patterns of F resulting from regularizers that promote element-
wise sparsity.

Fig. 15. Performance vs. sparsity (ðJ� JcÞ=Jc vs. cardðFÞ=cardðFcÞ) comparison of sparse
γA ½10�4 ; 3�.
Section 4.2.2 selects better subsets of sensors than the truncation
approach.
5.3. Sparsity-promoting wide-area control of a power network

The New England Test System (NETS)–New York Power System
(NYPS) example consists of 16 machines, 68 buses, and 5 areas; see
Fig. 13. All the generators have fast static excitation system, while
generators 1–12 are also equipped with Power System Stabilizers
(PSSs); see [89,103] for a detailed description of the model.

The open-loop system is unstable, and PSSs are used for stabili-
zation and to suppress local oscillations. For the wide-area control
design, we assume that the PSS inputs are embedded in the open-
loop matrix AAR147�147. In our recent work [113], we have shown
that optimal retuning of fully decentralized controllers can guard
against local and inter-area oscillations but incorporating limited
communication exchange can further improve performance.

Elementwise sparsity is not the appropriate desired structure for
this problem. Since the obstacle precluding centralized control is
maintaining a communication channel, the marginal cost of sending
additional state information between generators that are already
connected is low. Moreover, each generator has ‘free’ access to its
own states. This motivates regularization with a block-sparsity pro-
moting penalty function which does penalize each generators’ access
to its own states. Furthermore, since only relative information is
F and the optimal centralized controller Fc for 50 logarithmically spaced points

Fig. 16. Sparsity patterns of F resulting from regularizers that promote block
sparsity.
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Fig. 17. Performance vs. sparsity comparison (ðJ� JcÞ=Jc vs. cardðFÞ=cardðFcÞ) of block-sparse F and the optimal centralized controller Fc for 50 logarithmically spaced points
γA ½10�4 ; 0:1�.

Fig. 18. Power spectral density comparison.
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available about rotor angles, the block of the feedback gain matrix
mapping θ to u must have a Laplacian structure.

We next provide a brief summary of our computational results.

5.3.1. Elementwise sparsity
We first consider an optimal controller whose structure is

identified using regularizers that promote elementwise sparsity.
Sparsity patterns of the feedback matrix FAR12�147 for different
values of γ are illustrated in Fig. 14. The blue dots denote infor-
mation coming from the generators on which the particular con-
troller acts, and the red dots identify information that needs to be
communicated from other generators. For γ ¼ 0:5574 and γ ¼
0:8490 , the identified wide-area control architecture indicates
that the controller of generator 1 needs to have access to the dif-
ference between its angle and the angle of generator 9.

When γ is increased to 3, we obtain a fully decentralized con-
troller. Compared to the optimal centralized controller, our fully
decentralized controller degrades the closed-loop performance by
about 13.09%; see Fig. 15. This fully decentralized controller can be
embedded into the local generator excitation system by directly
feeding the local measurements to the automatic voltage reg-
ulator, thereby effectively retuning the PSS controller.

5.3.2. Block sparsity
Three identified block-sparsity patterns of the feedback matrix

are shown in Fig. 16. When γ¼0.1, we obtain a fully decentralized
controller structure. The group sparsity-promoting penalty func-
tion yields block-diagonal feedback gains that act on the remaining
states of generators 1–12. Since no information exchange with
generators 13–16 is required, this part of F is implemented in a
fully decentralized fashion.

Compared to the optimal centralized controller, a fully decen-
tralized controller with structure shown in Fig. 16c compromises
performance by only 2.56% for system of such large dimension; see
Fig. 17. We recall that the fully decentralized controller with
structure shown in Fig. 14c degrades performance by 13.09%; cf.
Fig. 15. Since the block-sparse controller has more degrees of
freedom than the elementwise sparse controller, performance
improvement does not come as a surprise. We finally note that the
jumps in the number of non-zero elements in Fig. 17 are caused by
elimination of the entire off-diagonal rows of the feedback gain
that acts on the states that exclude generator angles.

5.3.3. Comparison of open- and closed-loop systems
We next compare performance of the open-loop system and the

closed-loop systems with optimal centralized and fully decentralized
sparse and block-sparse controllers. The structures of these fully
decentralized controllers are shown in Figs. 14c and 16c, respectively.

Fig. 18 provides a comparison between the power spectral
densities of four cases. All three controllers successfully suppress
resonant peaks associated with the poorly damped modes and
significantly improve performance. We also note that the fully
decentralized block-sparse controllers perform almost as well as
the optimal centralized controller for high frequencies; for low
frequencies, we observe minor performance degradation.

5.4. Combination drug therapy for HIV treatment

Consider the HIV combination drug therapy problem described in
Section 4.1.3. Following [59,57,55], we study a system with 35
mutants x and 5 drugs f. The sparsity pattern of the A matrix, shown
in Fig. 19, corresponds to the mutation pattern and replication rates
of the HIV mutants and K(f) specifies the effect of drug therapy.

5.4.1. Budget constraint
We first impose a unit budget constraint on the drug doses and

solve the H2 and H1 optimal control problems,

minimize Jðf Þ
subject to

X
i

f i ¼ 1; f iZ0;

using proximal gradient and proximal subgradient methods [5,6].
A budget constraint naturally promotes sparsity because of its
duality to the ℓ1 norm. Table 1 contains the optimal doses and
illustrates the tradeoff between H2 and H1 performance.



Fig. 19. Mutation pattern in the HIV model.

Table 1
Optimal budgeted doses and the corresponding H2 and H1 norms.

Antibody fH2
fH1

3BC176 0.5952 0.9875
PG16 0 0
45-46G54W 0.2484 0.0125
PGT128 0.1564 0
10-1074 0 0

Performance fH2
fH1

J2 0.6017 1.1947
J1 0.1857 0.1084

number of drugs.
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5.4.2. Sparsity-promoting framework
In Algorithm 1, we introduce a quadratic regularization term to

limit drug doses and the ℓ1 regularization term to select sparser
sets of drugs. We use a re-weighted ℓ1 penalty function [14] to
select a few drugs and then perform a polishing step to design the
optimal doses of selected drugs. In the algorithm, card denotes the
number of nonzero elements and sp denotes the sparsity pattern
of the vector f.

Fig. 20 shows performance degradation (in percents) relative to
the optimal dose that uses all 5 drugs with B¼ C ¼ I, R¼ I, and γ
varying from 0.01 to 10 in 50 logarithmically spaced increments.

Algorithm 1. Sparsity-promoting algorithm for N drugs.
Set
Str
W

f γ

wi

En
Po

f ⋆
γ¼0, Rg0, wi ¼ 1, ε40
ucture Identification
hile card ðf γÞ4N

¼ argminf Jðf Þþ f TR f þγ
P

iwi j f i j
¼ 1=ðf γi þεÞ; increase γ
d While
lishing

¼ argminf Jðf Þþ f TR f

subject to sp ðf ÞDsp ðf γÞ:
6. Concluding remarks
Fig. 20. H2 and H1 performance degradation (in percents) as a function of the
This review article is about the design of controller structures
that achieve a balance between performance and some measure of
structural complexity. In large-scale dynamical networks, one
notion of structural complexity is given by the level of information
exchange in the closed-loop system. To obtain structured archi-
tectures, we solve regularized versions of the standard H2 optimal
control problem. Such regularization yields a parameterized family
of controller architectures that establish a tradeoff between
closed-loop performance and the structural properties of the
controller. Finally, we design an optimal controller by minimizing
the H2 norm over the identified structure. For large-scale net-
works of dynamical systems where limited information exchange
is desired, our approach yields a parameterized family of com-
munication topologies that gradually transition from all-to-all to
decentralized architectures.

Since these problems are nonconvex in general, we have
developed algorithms based on the augmented Lagrangian
method to obtain locally optimal solutions. Furthermore, we have
identified classes of convex problems that arise in the design of
symmetric systems, undirected consensus and synchronization
networks, optimal selection of sensors and actuators, and decen-
tralized control of positive systems. Finally, we have used exam-
ples to illustrate the utility of our approach. Beyond what was
reported in the paper, the method has already been applied on a
host of problems including technologically relevant wide-area
control of power networks [32,33,114], control of high density
arrays of micro-cantilevers [77,78], and optimal distributed control
for earthquake mitigation in civil engineering structures [108].
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