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Abstract— We study the problem of identifying sparse inter-
action topology using sample covariance matrix of the state of
the network. Specifically, we assume that the statistics are gener-
ated by a stochastically-forced undirected first-order consensus
network with unknown topology. We propose a method for
identifying the topology using a regularized Gaussian maximum
likelihood framework where the `1 regularizer is introduced as
a means for inducing sparse network topology. The proposed
algorithm employs a sequential quadratic approximation in
which the Newton’s direction is obtained using coordinate
descent method. We provide several examples to demonstrate
good practical performance of the method.

Index Terms— Convex optimization, coordinate descent, `1
regularization, maximum likelihood, Newton’s method, sparse
inverse covariance estimation, sequential quadratic approxima-
tion, topology identification, undirected consensus networks.

I. INTRODUCTION

Recovering network topology from partially available sta-
tistical signatures is a challenging problem. Due to exper-
imental or numerical limitations, it is often the case that
only noisy partial network statistics are known. Thus, the
objective is to account for all observed correlations that may
be available and to develop efficient convex optimization
algorithms (for network topology identification) that are
well-suited for big data problems.

Over the last decade, a rich body of literature has been
devoted to the problems of designing network topology to
improve performance [1]–[8] and identifying an unknown
network topology from available data [9]–[16]. Moreover, the
problem of sparsifying a network with dense interconnection
structure in order to optimize a specific performance measure
has been studied in [17], [18]. In [19], it was demonstrated
that individual starlings within a large flock interact only with
a limited number of immediate neighbors. The authors have
shown that the networks with six or seven nearest neighbors
provide an optimal trade-off between flock cohesion and
effort of individual birds. These observations were made
by examining how robustness of the group depends on
the network structure. The proposed measure of robustness
captures the network coherence [20] and it is well-suited for
developing tractable optimization framework.
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In this paper, we develop a convex optimization framework
for identifying sparse interaction topology using sample
covariance matrix of the state of the network. Our frame-
work utilizes an `1-regularized Gaussian maximum likeli-
hood estimator. Because of strong theoretical guarantees,
this approach has been commonly used for recovering sparse
inverse covariance matrices [21]–[25]. We utilize the struc-
ture of undirected networks to develop an efficient second-
order method based on a sequential quadratic approximation.
As in [26], [27], we compute the Newton’s direction using
coordinate descent method [28]–[30] that employs active set
strategy. The main point of departure is the formulation
of a convex optimization problem that respects particular
structure of undirected consensus networks. We also use
a reweighted `1-heuristics as an effective means for ap-
proximating non-convex cardinality function [31], thereby
improving performance relative to standard `1 regularization.

Our presentation is organized as follows. In Section II,
we formulate the problem of topology identification using
sparse inverse covariance matrix estimation. In Section III,
we develop a customized second-order algorithm to solve
the `1-regularized Gaussian maximum likelihood estimation
problem. In Section IV, we use computational experiments to
illustrate features of the method. In Section V, we conclude
with a brief summary.

II. PROBLEM FORMULATION

In this section, we provide background material on
stochastically forced undirected first-order consensus net-
works and formulate the problem of topology identification
using a sample covariance matrix. The inverse of a given
sample covariance matrix can be estimated using Gaussian
maximum likelihood estimator. For undirected consensus
networks, we show that the estimated matrix is related to
the graph Laplacian of the underlying network.

Our objective is to identify the underlying graph structure
of a stochastically forced undirected consensus network
with a known number of nodes by sampling its second-
order statistics. In what follows, we relate the problem of
topology identification for consensus networks to the inverse
covariance matrix estimation problem.

A. Undirected consensus networks

We consider an undirected consensus network

ψ̇ = −Lx ψ + d, (1)

where ψ ∈ Rn represents the state of n nodes, d is the
disturbance input, and the symmetric n × n matrix Lx

2016 IEEE 55th Conference on Decision and Control (CDC)
ARIA Resort & Casino
December 12-14, 2016, Las Vegas, USA

978-1-5090-1836-9/16/$31.00 ©2016 IEEE 4624



represents the graph Laplacian. The matrix Lx is restricted to
have an eigenvalue at zero corresponding to an eigenvector
of all ones, Lx1 = 0. This requirement is implicitly satisfied
by expressing Lx in terms of the incidence matrix E

Lx :=

m∑
l=1

xl ξl ξ
T
l = E diag (x)ET ,

where diag (x) is a diagonal matrix containing the vector
of edge weights x ∈ Rm. Each column ξl = ei − ej , where
ei ∈ Rn is the ith basis vector, represents an edge connecting
nodes i and j. The m columns of E specify the edges
that may be used to construct the consensus network. For a
complete graph, there are m = n(n− 1)/2 potential edges.

In order to achieve consensus in the absence of distur-
bances, it is required that the closed-loop graph Laplacian,
Lx, be positive definite on the orthogonal complement of
the vector of all ones, 1⊥ [32]. This amounts to positive
definiteness of the “strengthened” graph Laplacian of the
closed-loop network

X := Lx + (1/n)11T � 0. (2)

Clearly, since Lx1 = 0, X1 = 1.
Consensus networks attempt to compute the network aver-

age; thus, it is of interest to study the deviations from average

ψ̃(t) := ψ(t) − 1 ψ̄(t) =
(
I − (1/n)11T

)
ψ(t),

where ψ̄(t) := (1/n)1Tψ(t) is the network average and
corresponds to the zero eigenvalue of Lx. From (1), it follows
that the dynamics of the deviation from average are,

˙̃
ψ = −Lxψ̃ +

(
I − (1/n)11T

)
d.

The steady-state covariance of ψ̃,

P := lim
t→∞

E
(
ψ̃(t) ψ̃T (t)

)
,

is given by the solution to the algebraic Lyapunov equation

Lx P + P Lx = I − (1/n)11T .

For connected networks, the unique solution is given by

P =
1

2
L†x =

1

2

((
Lx + (1/n)11T

)−1 − (1/n)11T
)

=
1

2

(
X−1 − (1/n)11T

)
,

(3)
where (·)† is the pseudo-inverse of a matrix. Thus, the inverse
of the steady-state covariance matrix of the deviation from
network average is determined by the strengthened graph
Laplacian of the consensus network X .

B. Topology identification
A sparse precision matrix can be obtained as the solution

to the regularized maximum log-likelihood problem [23],

minimize
X

− log det (X) + trace (S X) + γ ‖X‖1

subject to X � 0,
(4)

where S is the sample covariance matrix, γ is a positive
regularization parameter, and ‖X‖1 :=

∑
|Xij | is the `1

norm of the matrix X . The `1 norm is introduced as a means
for inducing sparsity in the inverse covariance matrix where a
zero element implies conditional independence. This problem
has received significant attention in recent years [21], [23],
[26], [27], [33]–[36].

In this work, we establish a relation between inverse
covariance matrix estimation and the problem of topology
identification of an undirected consensus network. We are
interested in identifying a sparse topology that yields close
approximation of a given sample covariance matrix. This is
achieved by solving the following problem,

minimize
x

J(x) + γ

m∑
l=1

|xl|

subject to E diag (x)ET + (1/n)11T � 0,

(NI)

where

J(x) = − log det
(
E diag (x)ET + (1/n)11T

)
+ trace (S E diag (x)ET ).

Relative to [21], [26], [27], [33], [34], our optimization
problem has additional structure induced by the dynamics
of undirected consensus networks.

The network identification problem (NI) is a convex but
non-smooth problem where the optimization variable is the
vector of the edge weights x ∈ Rm and the problem data is
the sample covariance matrix S and the incidence matrix.
The incidence matrix is selected to contain all possible
edges. The `1 norm of x is a convex relaxation of the
cardinality function and it is introduced to promote sparsity.
The positive parameter γ specifies the emphasis on sparsity
versus matching the sample covariance matrix S. For γ = 0,
the solution to (NI) is typically given by a vector x with
all non-zero elements. The positive definite constraint comes
from (2) and guarantees a connected closed-loop network and
thus asymptotic consensus in the absence of disturbances.

Remark 1: We also use this framework to address the
network sparsification problem where it is of interest to find
a sparse network that generates close approximation of the
covariance matrix of a given dense network. We choose E
to be equal to the incidence matrix of the primary network.

III. CUSTOMIZED ALGORITHM BASED ON SEQUENTIAL
QUADRATIC APPROXIMATION

We next exploit the structure of the optimization prob-
lem (NI) to develop an efficient customized algorithm. Our
algorithm is based on sequential quadratic approximation of
the smooth part J of the objective function in (NI). This
method benefits from exploiting second-order information
about J and from computing the Newton direction using
cyclic coordinate descent [28]–[30] over the set of active
variables. We find a step-size that ensures the descent direc-
tion via backtracking line search. Furthermore, by restricting
our computations to active search directions, computational
cost is significantly reduced. A similar approach has been
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recently utilized in a number of applications, including sparse
inverse covariance estimation in graphical models [26], [27],
[37]. In this work, we have additional structural constraints
and use reweighted heuristics in order to achieve sparsity.
We use an alternative proxy for promoting sparsity which is
given by the weighted `1 norm [31]. In particular, we solve
problem (NI) for different values of γ using a path-following
iterative reweighted algorithm; see Section II (A) in [38]. The
topology identification then is followed by a polishing step
to debias the identified edge weights.

A. Structured problem: debiasing step

In addition to promoting sparsity of the identified edge
weights, the `1 norm penalizes the magnitude of the nonzero
edge weights. In order to gauge the performance of the
estimated network topology, once we identify a set of sparse
topology via (NI), we solve the structured “polishing” or
“debiasing” problem to optimize J over the set of identified
edges. To do this, we form a new incidence matrix Ê
which contains only those edges identified as nonzero in the
solution to (NI) and form the problem,

minimize
x

− log det
(
Ê diag (x) ÊT + (1/n)11T

)
+

trace
(
S Ê diag (x) ÊT

)
subject to Ê diag (x) ÊT + (1/n)11T � 0.

whose solution provides the optimal estimated graph Lapla-
cian with the desired structure.

B. Gradient and Hessian of J(x)

We next derive the gradient and Hessian of J which can
be used to form a second-order Taylor series approximation
of J(x) around xk,

J(xk + x̃) ≈ J(xk) + ∇J(xk)T x̃ +
1

2
x̃T ∇2J(xk) x̃.

(5)
Proposition 1: The gradient and the Hessian of J at xk

are

∇J(xk) = diag
(
ET (S − X−1(xk))E

)
∇2J(xk) = M(xk) ◦ M(xk)

(6)

where ◦ denotes the elementwise (Hadamard) product and

X−1(xk) :=
(
EDxk ET + (1/n)11T

)−1
,

M(xk) := ETX−1(xk)E.

Proof: Utilizing the second order expansion of the log-
determinant function we have

J(xk + x̃) − J(xk) ≈ trace
(
ET (S − X−1(xk))EDx̃

)
+

1

2
trace

(
Dx̃E

TX−1(xk)EDx̃E
TX−1(xk)E

)
.

The expressions in (6) can be established using a sequence of
straightforward algebraic manipulations in conjunction with
the use of the commutativity invariance of the trace function

and the following properties for a matrix T , a vector α, and
a diagonal matrix Dα,

trace (T Dα) = αT diag (T )

trace (Dα T Dα T ) = αT (T ◦ T )α.

C. Algorithm

Our algorithm is based on building the second-order Taylor
series expansion of the smooth part of the objective function
J in (NI) around the current iterate xk. Approximation J
in (NI) with (5),

minimize
x̃

∇J(xk)T x̃ +
1

2
x̃T ∇2J(xk) x̃ + γ ‖xk + x̃‖1

subject to E diag
(
xk + x̃

)
ET + (1/n)11T � 0.

(7)
We use the coordinate descent algorithm to determine the
Newton direction. Let x̃ denote the current iterate approxi-
mating the Newton direction. By perturbing x̃ in the direction
of the ith standard basis vector ei ∈ Rm, x̃ + µi ei, the
objective function in (7) becomes

∇J(xk)T (x̃+ µi ei) +
1

2
(x̃+ µi ei)

T ∇2J(xk) (x̃+ µi ei)

+ γ |xki + x̃i + µi|.

Elimination of constant terms allows us to express (7) as

minimize
µi

1

2
ai µ

2
i + bi µi + γ |ci + µi| (8)

where (ai, bi, ci, xki , x̃i) are the problem data,

ai := eTi ∇2J(xk) ei

bi :=
(
∇2J(xk) ei

)T
x̃ + eTi ∇J(xk)

ci := xki + x̃i.

The explicit solution to (8) is given by

µi = − ci + Sγ/ai(ci − bi/ai) ,

where Sκ(y) = sign (y) max (|y| − κ, 0) , is the soft-
thresholding function.

After the Newton direction x̃ has been computed, we
determine the step-size α via backtracking. This guarantees
positive definiteness of the strengthened graph Laplacian and
sufficient decrease of the objective function. We use Armijo
rule to find an appropriate step-size such that E diag(xk +
αx̃)ET + (1/n)11T is positive definite matrix and

J(xk + αx̃) + γ ‖xk + αx̃‖1 ≤ J(xk) + γ ‖xk‖1 +

ασ
(
∇J(xk)T x̃ + γ ‖xk + αx̃‖1 − γ ‖xk‖1

)
.

There are two computational aspects in our work which
lead to suitability of this algorithm for large-scale networks.
• Active set strategy

We propose an active set prediction strategy as an
efficient method to solve the problem (NI) for large
values of γ. It is an effective means for determining
which directions need to be updated in the coordinate
descent algorithm. The classification of a variable as
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either active or inactive is based on the values of xki
and the ith component of the gradient vector ∇J(xk).
Specifically, the ith search direction is only inactive if

xki = 0 and | eTi ∇J(xk) | < γ − ε

where ε > 0 is a small number (e.g., ε = 0.0001γ).
At each outer iteration, the Newton search direction is
obtained by solving the optimization problem over the
set of active variables. The size of active sets is small
for large values of the regularization parameter γ.

• Memory saving
Computation of bi in (8) requires a single vector inner
product between the ith column of the Hessian and
x̃, which typically takes O(m) operations. To avoid
direct multiplication, in each iteration after finding µi,
we update the vector ∇2J(xk)T x̃ using the correction
term µi(E

TX−1ξi) ◦ ((X−1ξi)
TE)T and take its ith

element to form bi. Here, ξi is the ith column of
the incidence matrix of the controller graph. This also
avoids the need to store the Hessian of J , which is
an m × m matrix, thereby leading to a significant
memory saving. Moreover, the ith column of ∇2J(xk)
and the ith element of the gradient vector ∇J(xk) enter
into the expression for bi. On the other hand, ai is
determined by the ith diagonal element of the Hessian
matrix ∇2J(xk). All of these can be obtained directly
from ∇2J(xk) and ∇J(xk) which are formed in each
outer iteration without any multiplication.

Our problem is closely related to the problem in [27].
The objective function there has the form f(x) = J(x) +
g(x), where J(x) is smooth over the positive definite cone,
and g(x) is a separable non-differentiable function. In our
problem formulation, J(x) is smooth for E diag(x)ET +
(1/n)11T � 0 while the non-smooth part is the `1 norm
which is separable. Thus, convergence can be established
using similar arguments. According to [27, Theorems 1,2],
the quadratic approximation method converges to the unique
global optimum of (NI) and at super-linear rate.

The optimality condition for any x∗ that satisfies
E diag(x∗)ET + (1/n)11T � 0 is given by

∇J(x∗) + γ ∂ ‖x∗‖1 ∈ 0,

where ∂‖x∗‖1 is the subgradient of the `1 norm. This means
that for any i

∇iJ(x∗) ∈

 − γ, xi > 0;
γ, xi < 0;

[− γ, γ], xi = 0.

The stopping criterion is to check the norm of ∇J(x) and
the sign of x to make sure that x is the optimal solution.

IV. COMPUTATIONAL EXPERIMENTS

We next illustrate the performance of our customized
algorithm. We have implemented our algorithm in Matlab,
and all tests were done on 3.4 GHz Core(TM) i7-3770
Intel(R) machine with 16GB RAM.

The problem (NI) is solved for different values of γ
using the path-following iterative reweighted algorithm [31]
with ε = 10−5. The initial weights are computed using the
solution to (NI) with γ = 0 (i.e., the optimal centralized
vector of the edge weights). We then adjust ε = 0.001‖x‖2
at each iteration. Topology identification is followed by the
polishing step described in Section III-A. In the figures, we
use black dots to represent nodes, blue lines to identify
the original graph, and red lines to denote the edges in
the estimated sparse network. In all examples, we set the
tolerance for the stopping criterion to 10−4.

A. Network identification

We solve the problem of identification of a sparse network
using sample covariance matrix for 500 logarithmically-
spaced values of γ ∈ [0.1, 1000]. The sample covariance ma-
trix S is obtained by sampling the nodes of the stochastically-
forced undirected unweighted network whose topology is
shown in Fig. 1a. To generate samples, we conducted 20 sim-
ulations of system (1) forced with zero-mean unit variance
band-limited white noise d. The sample covariance matrix is
averaged over all simulations and asymptotically converges
to the steady-state covariance matrix. The incidence matrix
E in (NI) contains all possible edges.

Empirically, we observe that after about 5 seconds the
sample covariance matrix converges to the steady-state co-
variance. First, we sample the states after 3 seconds, so the
sample covariance matrix we compute is different than the
true steady-state covariance matrix. For (NI) solved with this
problem data, Figures 3 and 1c illustrate the topology of the
identified networks for the minimum and maximum values
of γ. In Fig. 1d, the blue line shows an edge in the original
network that has not been recovered by the algorithm for the
largest value of γ. The red lines in this figure show two extra
edges in the estimated network for the smallest value of γ
which were not present in the original graph. Next, we solve
the problem (NI) using a sample covariance matrix generated
by sampling the node states after 15 seconds. In this case,
the sample covariance matrix is closer to the steady-state
covariance matrix than the previous experiment. As shown
in Fig. 2a, the identified network is exactly the same as the
original network for γ = 0.1. If γ is further increased, a
network sparser than the original is identified; see Fig. 2b.

For γ = 0, the relative error between the covariance matrix
of the estimated network and the sample covariance matrix
S is given by

‖
(
E diag (xc)E

T + (1/n)11T
)−1 − S‖F

‖S‖F
= 0.004%,

where ‖ · ‖F is the Frobenius norm and xc is the so-
lution to (NI) with γ = 0. As γ increases, the number
of nonzero elements in the vector of the edge weights x
decreases and the state covariance matrix gets farther away
from the given sample covariance matrix. In particular, in
the first experiment for γ = 1000, only twelve edges
are chosen. Relative to the centralized network with the
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(a) Original network
with n = 12 nodes

(b) γ = 0.1

(c) γ = 1000 (d) Distinct edges

Fig. 1: The problem of identification of sparse networks
using sample covariance matrix for a network with n = 12

nodes.

(a) γ = 0.1 (b) γ = 1000

Fig. 2: The problem of identification of sparse networks
using sample covariance matrix for a network with n = 12

nodes.

vector of the edge weights xc, the identified sparse net-
work in this case uses only 18.182% of the edges, i.e.,
card(x)/card(xc) = 18.182% and achieves a relative error
of 53.841%, (‖X−1 − S‖F )/‖S‖F = 53.841%, with X =(
E diag (x)ET + (1/n)11T

)
. In the second experiment,

the identified sparse network has 16.666% of the potential
edges and achieves a relative error of 51.067%.

B. Network sparsification

We next use (NI) to find a sparse representation of a
dense consensus network. Inspired by [39], we generate
a network by randomly distributing nodes in a 10 × 10
box. A pair of nodes can communicate if the Euclidean
distance between them, d(i, j), is not greater than 5 units
and the edge connecting them has weight exp (− d(i, j)).
The incidence matrix of the identified graph is selected
to be equal to the incidence matrix of the given graph;
i.e., the sparse network’s edges are a subset of the original
network’s. Figure 3a shows a graph with 50 nodes. We use
the reweighted `1 regularized Gaussian maximum likelihood
estimation framework, for 200 logarithmically-spaced values
of γ ∈ [0.01, 100] following by the polishing step. The
sparse graph topologies identified for different values of γ
are shown in figures 3b, 3c, and 3d. As γ increases, the
identified graph becomes sparser.

For γ = 0.01, 222 edges are chosen to be in the
sparse estimated network which is only 34.851% of the

(a) Original network
with n = 50 nodes

(b) γ = 0.01

(c) γ = 0.102 (d) γ = 1.138

Fig. 3: The problem of sparsification of a network with
n = 50 nodes using sample covariance matrix.

637 potential edges. The network with these selected edges
achieves a relative error of 29.965%,

‖X−1 − S‖F
‖S‖F

= 29.965%.

For the largest value of the sparsity-promoting parameter,
γ = 1.138, only 64 edges are present (10.047% of the
potential edges) in the estimated graph that gets a relative
error of 207.493%.

To provide a point of comparison, we compare the per-
formance of our algorithm to a simple truncation scheme.
In this scheme, the edge with the smallest weights that
does not disconnect the network is iteratively removed until
the network has the desired sparsity. After identifying the
topology in this way, the polishing step optimizes the edge
weights of the selected set of edges.

Figure 4 shows the relative errors of our algorithm (in
red dashed lines) and the truncation algorithm (in blue solid
lines) on a log scale against the number of removed edges.
As the number of edges in the estimated graph decreases, the
relative error of both algorithms increases. The relative error
of network topologies identified by our algorithm is much
smaller than the error of those identified by the truncation
algorithm, and thus our customized algorithm outperforms
the truncation method. In particular, when 573 edges are
removed, the relative errors for our customized algorithm and
the truncation algorithm are 2.075 and 8.977, respectively.

V. CONCLUDING REMARKS

We have developed a method for identifying the topology
of an undirected consensus network using available statistical
data. In order to promote network sparsity, we introduce
a convex optimization framework aimed at finding the so-
lution to the `1-regularized maximum likelihood problem.
This problem is closely related to the problem of sparse
inverse covariance estimation that has received significant
attention in the literature. In our setup, additional structure
arises from the requirement that data is generated by an
undirected consensus network. By exploiting the structure
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(‖
X

−
1
−
S
‖ F

)/
‖S
‖ F

Number of eliminated edges

Fig. 4: Relative error in log-scale for the sparsification
problem of a network with n = 50 nodes using sample

covariance matrix.

of the problem, we develop an efficient algorithm based on
the sequential quadratic approximation method in which the
search direction is determined using coordinate descent with
active set strategy. Several examples have been provided
to illustrate utility of the method and efficiency of the
customized algorithm.
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