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Abstract— This paper studies the interplay between dynamics
and statistics of a stochastically driven dynamical system.
Motivation is provided by applications in fluid flow modeling
and control. In this context, second-order statistics around the
mean velocity profile can be obtained, for a subset of variables,
from experiments or numerical simulations. The basic idea is to
determine a parsimonious perturbation of the generator of the
linearized Navier-Stokes equations, together with directions of
excitation sources, that can account for the observed statistics.
This covariance completion problem is to determine minimum
energy and low-rank perturbation of the linearized dynamics
to reconcile them with the partially available second-order
statistics – such models are valuable as tools for analysis and
control purposes. The resulting optimization problem can be
cast as a convex semidefinite program (SDP). However, general-
purpose SDP solvers cannot handle typical problem-sizes that
are of interest in fluid flows. We develop customized algorithms
that allow handling such covariance completion problems for
substantially larger scales. These algorithms exploit the struc-
ture of the problem and utilize the method of multipliers and
the proximal augmented Lagrangian method.

Index Terms— Convex optimization, method of multipliers,
proximal augmented Lagrangian, proximal methods, state co-
variances, structured matrix completion.

I. INTRODUCTION

We are interested in structured covariance completion
problems. These are of great value in fluid flow modeling and
control. Indeed, it has been shown that stochastically-forced
linearized Navier-Stokes (NS) equations around the mean
velocity profile qualitatively replicate the structural features
of shear flows [1]–[5]. This insight provides the basis and
motivates the problem of determining suitable perturbations
of linearized dynamics to reconcile data from measurements
or numerical simulations and, thereby, identify consistent
models for analysis and design.

A significant advance in utilizing stochastically-forced lin-
earized NS equations for analysis and control, was achieved
in recent years when the value of nontrivial stochastic forcing
(i.e. colored-in-time noise as opposed to white) was recog-
nized [6]–[10]. Indeed, it has been shown that colored-in-
time noise can account for features of the flow field that white
noise cannot. Interestingly, it has further been shown that
colored-in-time excitation can be seen as equivalent to the
effect of white noise together with a suitable perturbation of
the system dynamics. In such perturbation, no increase in the
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state dimension is needed to generate time-correlations [9],
[10]. Moreover, in a reverse direction, perturbation of the
system dynamics reveals potentially important coupling be-
tween states in the form of dynamical interactions (state
feedback) [10, Section 6.1].

Based on this last point, an optimal state-feedback synthe-
sis problem was formulated to account for available statistical
signatures in [11]. Parsimony in this approach dictates penal-
izing the size, directionality, and number of state-feedback
couplings. Thus, it is natural to select, e.g., using suitable
sparse/low-rank promoting functionals, a small subset of
input “channels” through which suitable state-feedback can
account for the available second-order statistics. To this end
and to address the combinatorial complexity we present a
convex formulation having roots in optimal sensor and actu-
ator selection [12], [13]. The resulting convex optimization
problem provides information about critical directions that
have maximal effect in bringing model and statistics in agree-
ment. More specifically, we formulate a minimum-control-
energy covariance completion problem that can be cast as
a semidefinite program (SDP). Similar problems have been
considered by different complementing viewpoints, aiming
at control of stochastic systems [14]–[17] and estimation of
output covariances [18]–[21].

In the present paper, we exploit the problem structure
and develop efficient customized algorithms for large-scale
problems that generic SDP solvers cannot handle. Since the
objective function in our optimization problem is nonsmooth,
standard gradient-based methods are not applicable. The lack
of differentiability can be addressed by splitting the smooth
and nonsmooth components of the objective function over
separate variables that are coupled via additional equality
constraints. Indeed, this idea allows us to employ the recently
developed proximal augmented Lagrangian method [22] as
well as the well-known alternating direction method of multi-
pliers [23]. We propose an alternative approach, which takes
advantage of the structural constraint on the optimization
variables. By expressing one variable in terms of the other,
we remove one constraint and recast the problem into a form
amenable to the standard proximal gradient method. Our
numerical experiments demonstrate the efficacy and superior
performance of our approach relative to splitting methods.

Our presentation is organized as follows. In Section II, we
formulate the minimum energy covariance completion prob-
lem. In Section III, we present two customized algorithms
for solving this optimization problem. In Section IV, we
offer a motivating example and present results of numerical
experiments. Finally, we provide concluding thoughts in
Section V.
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II. PROBLEM FORMULATION

Consider the linear time-invariant (LTI) system

ẋ = Ax + B1 u + B2 d

y = Cx
(1)

where x(t) ∈ Cn is the state vector, y(t) ∈ Cp is the output,
u(t) ∈ Cm is the control input, d(t) is a stationary zero-
mean stochastic process, B1 and B2 ∈ Cn×m are the input
matrices with m ≤ n, C ∈ Cp×n is the output matrix, and
(A,B2) is a controllable pair.

We are interested in the setup where matrix A in (1)
is known but due to experimental or numerical limitations,
only partial correlations between a limited number of state
components are available. Moreover, it is often the case
that the origin and directionality of excitation sources that
generate the statistics is unknown. It is desired to design
an optimal feedback control law, u = −Kx, such that the
closed loop system given by

ẋ = (A − B2K)x + B1 d (2)

accounts for the partially available statistics. On the other
hand, the steady-state covariance matrix of the state

X := lim
t→∞

E (x(t)x∗(t)) ,

satisfies the following rank condition [24]:

rank

[
AX + X A∗ B2

B∗2 0

]
= rank

[
0 B2

B∗2 0

]
.

This implies that any X � 0 is admissible as a covariance
of the LTI system (1) if the input matrix B2 is full row
rank [24], which eliminates the role of the dynamics inherent
in A. It is thus important to limit the rank of the input matrix
B2 and thereby the number of input channels that can perturb
the dynamical generator A in (2) [9], [10].

Based on this, the regularized minimum energy covariance
completion problem

minimize
K,X

trace (K∗XK) + γ
n∑

i= 1

wi ‖e∗i K‖2

subject to (A−B2K)X + X(A−B2K)∗ + V = 0

(CXC∗) ◦ E − G = 0

X � 0,
(3)

was proposed in [11] to obtain an optimal feedback gain K
that minimizes the control energy in statistical steady-state
and at the same time account for partially known statistics.
In this problem, the performance index trace (KXK∗) is
augmented with a term that promotes row-sparsity of the
feedback gain matrix K, V := B1 ΩB∗1 with Ω as the
covariance of the white noise process d, γ is a positive
regularization parameter, wi are nonzero weights, and ei is
the ith unit vector in Rm. Matrices A, B1, B2, C, E, G, and
Ω are problem data, and hermitian matrix X ∈ Cn×n and
feedback gain matrix K ∈ Cm×n are optimization variables.
Entries of matrix G represent partially available second-order
statistics of the output y, the symbol ◦ denotes elementwise

matrix multiplication, and E is the structural identity matrix,

Eij =

{
1, if Gij is available
0, if Gij is unavailable.

When the ith row of K is identically equal to zero, the
ith input channel in the matrix B2 is not used. Therefore,
problem (3) identifies a subset of critical input channels by
promoting row-sparsity of K, thereby uncovering the precise
dynamical feedback interactions that are required to reconcile
the available covariance data with the given linear dynamics.

Since X is positive definite, the standard change of
variables Y := KX and the equivalence between the row-
sparsity of K and the row-sparsity of Y [12] can be utilized
to bring problem (3) into the following form

minimize
X,Y

trace
(
Y X−1Y ∗

)
+ γ

n∑
i= 1

wi ‖e∗i Y ‖2

subject to AX + X A∗ − B Y − Y ∗B∗ + V = 0

(CXC∗) ◦ E − G = 0

X � 0,
(CC)

which is SDP representable [25]. Finally, the optimal feed-
back gain matrix can be recovered as K = Y X−1. The
convexity of (CC) follows from the convexity of its objective
function and the convexity of the constraint set [26]. To solve
problem (CC) for sizes that general-purpose SDP solvers
cannot, we next develop customized algorithms based on the
associated augmented Lagrangian.

III. CUSTOMIZED ALGORITHMS

We present two customized algorithms based on the
method of multipliers (MM) and the recently developed
Proximal Augmented Lagrangian (PAL) method [22]. The
method of multipliers is widely used for solving constrained
nonlinear programming problems [27]–[29]. Similar to the
Alternating Direction Method of Multipliers (ADMM) [23],
PAL utilizes the problem structure to split smooth and
nonsmooth parts of the objective function over separate
variables that are coupled via additional equality constraints.
Relative to ADMM, PAL offers systematic update rules
for the augmented Lagrangian parameter ρ which facilitates
improved practical performance.

For notational compactness, we write the linear constraints
in (CC) as

A1(X) − B(Y ) + V = 0

A2(X) − G = 0

with linear operators A1: Cn×n → Cn×n, A2: Cn×n →
Cp×p and B: Cm×n → Cn×n defined as

A1(X) := AX + X A∗,

A2(X) := (CXC∗) ◦ E,
B(Y ) := B2 Y + Y ∗B∗2 .

A. Elimination of variable X
For any Y , there is a unique X that solves the equation

A1(X) − B(Y ) + V = 0
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if and only if λi+λ̄j 6= 0 for all i and j where λ1, λ2, . . . , λn
are eigenvalues of the matrix A [30]. Note that a stabilizing
Y always has a unique solution X . Herein, we assume that
λi + λ̄j 6= 0 which allows us to express the variable X as a
linear function of Y ,

X(Y ) = A−1
1 (B(Y ) − V ) , (4)

and restate problem (CC) as

minimize
Y

f(Y ) + γ g(Y )

subject to A2(X(Y )) − G = 0

X(Y ) � 0,

(CC1)

where

f(Y ) := trace
(
Y X−1(Y )Y ∗

)
g(Y ) :=

n∑
i= 1

wi ‖e∗i Y ‖2.

Since (CC1) is equivalent to (CC) constrained to the linear
subspace defined by (4), it remains a convex problem.

B. Method of multipliers

The method of multipliers for the constrained optimization
problem (CC1) is given by

Y k+1 := argmin
Y

Lρ (Y ; Λk) (5a)

Λk+1 := Λk + ρ
(
A2(X(Y k+1)) − G

)
, (5b)

where Lρ is the augmented Lagrangian,

Lρ(Y ; Λ) = f(Y ) + γ g(Y ) +

〈Λ,A2(X(Y )) − G〉 +
ρ

2
‖A2(X(Y )) − G‖2F ,

Λ ∈ Cp×p is the Lagrange multiplier, ρ is a positive scalar,
〈·, ·〉 is the standard inner product between two matrices, and
‖ ·‖F is the Frobenius norm. The algorithm terminates when
the primal and dual residuals are small enough

‖A2(X(Y k+1)) − G‖F ≤ ε1 (6a)
‖Y k+1 − Y k‖F ≤ ε2. (6b)

1) Solution to the Y -minimization problem (5a): For fixed
Λk, minimizing the augmented Lagrangian with respect to
Y amounts to finding the minimizer of

Lρ(Y ; Λk) = f(Y ) + γ g(Y ) +〈
Λk,A2(X(Y )) − G

〉
+

ρ

2
‖A2(X(Y )) − G‖2F .

(7)

Since g(Y ) is nonsmooth, we cannot use standard gradient
descent methods to find the update Y k+1. This subproblem
can be iteratively solved using the proximal gradient method

Y j+1 = proxβg
(
Y j + αj ∇F (Y j)

)
,

where αj is the step-size, β = αjγ, j denotes the inner prox-
imal gradient iterations, proxβg(·) is the proximal operator
associated with the function g, and F (Y ) denotes the smooth

part of (7),

F (Y ) := f(Y ) +
〈
Λk,A2(X(Y )) − G

〉
+

ρ

2
‖A2(X(Y )) − G‖2F .

The expression for the gradient of F (Y ) is provided in the
Appendix. The proximal operator of function g is defined as

proxτg(V ) := argmin
Y

g(Y ) +
1

2τ
‖Y − V ‖2F ,

and is determined by the soft-thresholding operator which
acts on the rows of matrix V ,

Sτ (e∗i V ) =

{
(1 − τ/‖e∗i V ‖2) e∗i V, ‖e∗i V ‖2 > τ

0, ‖e∗i V ‖2 ≤ τ.

At each iteration, we determine the step-size αj via an
adaptive Barzilai-Borwein step-size selection [31] to en-
sure sufficient descent of (7) and positive definiteness of
X(Y j+1); see [32, Theorem 3.1] for details.

2) Lagrange multiplier update and choice of step-size ρ
in (5b): We follow the procedure outlined in [29, Algorithm
17.4] for the adaptive update of the step-size ρ that is used to
update the dual variable Λ. This procedure allows for inexact
solutions of the subproblem (5a) and a more refined update
of the Lagrange multiplier Λ through the adjustment of the
convergence tolerances ε1 and ε2 in (6) and step-size ρ.

C. Proximal augmented Lagrangian method
We next employ the method developed in [22, Algorithm

1] to solve the constrained optimization problem (CC1).
By introducing an additional optimization variable

Z, (CC1) can be written as

minimize
Y, Z

f(Y ) + γ g(Z)

subject to A2(X(Y )) − G = 0

Y − Z = 0

X(Y ) � 0,

(CC2)

The augmented Lagrangian associated with (CC2) is

Lρ(Y,Z; Λ1,Λ2) = f(Y ) + γ g(Z) +

〈Λ1,A2(X(Y )) − G〉 + 〈Λ2, Y − Z〉 +
ρ

2
‖A2(X(Y )) − G‖2F +

ρ

2
‖Y − Z‖2F ,

where Λ1 ∈ Cp×p and Λ2 ∈ Cm×n are Lagrange multipli-
ers. Through completion of squares and minimization with
respect to Z we achieve an explicit expression for Z?,

Z? = proxβg

(
Y +

1

ρ
Λ2

)
,

where β = γ/ρ. Substitution of Z? into the augmented
Lagrangian yields the proximal augmented Lagrangian as

Lρ(Y ; Λ1,Λ2) := Lρ(Y,Z?; Λ1,Λ2)

= f(Y ) + 〈Λ1,A2(X(Y )) − G〉 +

ρ

2
‖A2(X(Y ))−G‖2F + Mβg(Y +

1

ρ
Λ2) − 1

2ρ
‖Λ2‖2F ,

(8)
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which characterizes the augmented Lagrangian on the man-
ifold corresponding to explicit minimization over variable
Z. Here, Mβg is the Moreau envelope associated with the
proximal operator of function g [33], i.e.,

Mβg(V ) := inf
Z

γ g(Z) +
ρ

2
‖Z − V ‖2F .

The Moreau envelope is a continuously differentiable func-
tion, even though g is not, and its gradient is given by

∇Mβg(V ) = ρ (V − proxβg(V )).

The proximal augmented Lagrangian method solves prob-
lem (CC2) via a sequence of iterations in which Lρ is
minimized over the primal variable Y and maximized over
the dual variables Λ1 and Λ2 with step-size ρ,

Y k+1 := argmin
Y

Lρ (Y ; Λk1 , Λk2) (9a)

Λk+1
1 := Λk1 + ρ∇Λ1

Lρ(Y k+1; Λk1 ,Λ
k
2) (9b)

Λk+1
2 := Λk2 + ρ∇Λ2

Lρ(Y k+1; Λk1 ,Λ
k
2) (9c)

where
∇Λ1
Lρ = A2(X(Y )) − G

∇Λ2Lρ = Y k+1 − proxβg(Y
k+1 + 1

ρΛ2).

Updates to the Lagrange multipliers {Λk1 ,Λk2}, and step-size
ρ follow a similar adaptive procedure and termination criteria
as Section III-B.2; see [22] for additional details.

Solution of the Y -minimization problem (9a): Since (8)
is once continuously differentiable, gradient-based methods,
e.g., gradient descent, in conjunction with backtracking step-
size selection can be used to find the solution to problem (9a).
Herein, we employ the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) method highlighted in [29, Al-
gorithm 7.4] to estimate the Hessian inverse Hk and to
compute the descent direction as r = −Hk(∇Lρ). Our
experiments show that this approach results in satisfactory
performance for modest values of m (between 20-30).

For convex functions with Lipschitz continuous gradients,
BFGS is guaranteed to converge [34]. Although L-BFGS
requires strong convexity for guaranteed convergence [35],
we find that it works well in practice.

D. Computational complexity

Computation of the gradient in the Y -minimization step of
both MM and PAL involves computation of X from Y based
on (4), a matrix inversion, and solution to the Lyapunov
equation, which each take O(n3) operations, as well as an
O(mn2) matrix-matrix multiplication. The proximal operator
for the function g amounts to computing the 2-norm of all
m rows of a matrix with n columns, which takes O(mn)
operations. These steps are embedded within an iterative
backtracking procedure for selecting the step-size α. If the
step-size selection takes q1 inner iterations and it takes q2

iterations for the gradient based method to converge, the
total computation cost for a single iteration of MM or
PAL is O(q1q2n

3). In contrast, the worst-case complexity
of standard SDP solvers is O(n6).

Fig. 1. Geometry of a three-dimensional pressure-driven channel flow.

E. Comparison with ADMM
In contrast to ADMM, the optimization algorithms consid-

ered in this paper do not handle the lack of differentiability of
function g by fixing Z to minimize over Y . The customized
method of multipliers algorithm in Section III-B uses the
proximal gradient method to solve the nonsmooth problem
in the Y -minimization step, and the proximal augmented
Lagrangian method in Section III-C guarantees continu-
ous differentiability of the proximal augmented Lagrangian
Lρ(Y ; Λ1,Λ2) by constraining Lρ(Y, Z; Λ1,Λ2) to the man-
ifold resulting from explicit minimization over Z. Moreover,
it is important to note that the rate of convergence in
augmented Lagrangian-based methods is strongly influenced
by the choice of ρ. While both MM and PAL follow adaptive
rules for updating the step-size ρ in each iteration, ADMM
does not have efficient step-size selection rules. Typically, in
ADMM, either a constant step-size is selected or the step-size
is adjusted to keep the norms of primal and dual residuals
within a constant factor of one another [23].

IV. AN EXAMPLE

In an incompressible channel-flow, we consider the dy-
namics of infinitesimal fluctuations around the parabolic
mean velocity profile, ū = [U(x2) 0 0 ]T with U(x2) =
1 − x2

2; see Fig. 1 for geometry. The streamwise, wall-
normal and spanwise coordinates are represented by x1, x2,
and x3, respectively. Finite dimensional approximation of the
differential operators in the linearized NS equations around
ū results in the following state-space representation

ẋ(k, t) = A(k)x(k, t) + ξ(k, t),

y(k, t) = C(k)x(k, t).
(10a)

Here, x = [ vT2 ηT ]T ∈ C2N is the state, v2 and η =
∂x3

v1−∂x1
v3 are the wall-normal velocity and vorticity, the

output y = [ vT1 vT2 vT3 ]T ∈ C3N denotes the fluctuating
velocity vector, ξ is a stochastic forcing disturbance, k =
[ k1 k3 ]T denotes the vector of horizontal wavenumbers,
and the input matrix is the identity I2N×2N . The dynamical
matrix A ∈ C2N×2N and output matrix C ∈ C3N×2N are
described in [4]. We assume that the stochastic disturbance
ξ is generated by the low-pass filter

ξ̇(k, t) = −ξ(k, t) + w(t). (10b)

Here, w denotes a zero mean unit variance white process.
The solution to the Lyapunov equation

ÃΣ + Σ Ã∗ + B̃ B̃∗ = 0
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TABLE I
COMPARISON OF DIFFERENT ALGORITHMS (IN SECONDS) FOR

DIFFERENT NUMBER OF DISCRETIZATION POINTS N AND γ = 10.

N CVX MM PAL PAL + L-BFGS ADMM
11 9.3 0.19 10.02 14.06 3.10

21 97.67 5.6 127.28 101.16 113.4

31 899.99 7.19 321.03 295.24 574.44

51 - 34.76 − 4225 −
101 - 146.51 − − −

represents the steady-state covariance of system (10). Here,

Ã =

[
A I
O −I

]
, B̃ =

[
0
I

]
,

and
Σ =

[
Σxx Σxξ
Σξx Σξξ

]
.

The sub-covariance Σxx denotes the state covariance of
system (10a). At any horizontal wavenumber pair k, the
steady-state covariance matrices of the output y and the state
x are related by

Φ(k) = C(k) Σxx(k)C∗(k).

In this example, we set the covariance of white noise
disturbances to the identity (Ω = I) and assume knowledge
of one-point velocity correlations, or diagonal entries of the
streamwise Φ11, wall-normal Φ22, spanwise Φ33, and the
streamwise/wall-normal Φ12 two-point correlation matrices.
To account for the available statistics, we solve (CC) for a
state covariance X which agrees with the available statistics.

Numerical experiments were conducted for a channel flow
with Reynolds number Re = 103, (k1, k3) = (0, 1), for
various number of collocation points N in the wall-normal
direction x2 (state dimension n = 2N ), and for various
values of the regularization parameter γ. We initialize our
algorithms with Y 0 = KcXc, where Kc and Xc solve
the algebraic Riccati equation which specifies the optimal
centralized controller. This guarantees that X(Y 0) � 0.
Iterations were run for each method until the primal and dual
residuals satisfy a certain tolerance; cf. (6). For ε1, ε2 = 10−2

and γ = 10, Table I compares various methods based on run
times (sec). For N = 51 and 101, CVX failed to converge
and PAL and ADMM did not converge in a resonable
time. Clearly, MM outperforms PAL and ADMM for large
problems. This can also be deduced from Fig. 2, which shows
convergence curves of MM and PAL for N = 31 and γ = 10.

Figures 3(b,d) show the streamwise, and the
streamwise/wall-normal two-point correlation matrices
resulting from solving (CC) with γ = 10. Even though only
one-point velocity correlations along the main diagonal
of these matrices were used as problem data in (CC), we
observe reasonable recovery of off-diagonal terms of the

‖Y
k
−
Y

?
‖ F
/
‖Y

?
‖ F

iteration solve time (sec)
(a) (b)

Fig. 2. Convergence curves showing performance of MM (−), PAL (×),
PAL + L-BFGS (#), and ADMM (4) versus (a) the number of outer
iterations; and (b) solve times for N = 31 collocation points in the wall-
normal direction x2 and γ = 10. Here, Y ? is the optimal value for Y .

(a) (b)

x2

(c) (d)

x2

x2 x2

Fig. 3. True covariance matrices of the output velocity field (a, c), and
covariance matrices resulting from solving problem (CC) (b, d) with γ = 10
and N = 51. (a, b) Streamwise Φ11, and (c, d) streamwise/wall-normal
Φ12 two-point correlation matrices at k = (0, 1). One-point correlation
profiles that are used as problem data are marked along the main diagonals.

full two-point velocity correlation matrices.

V. CONCLUDING REMARKS

We have examined a class of covariance completion
problems in which the problem of accounting for partially
known second-order statistics via stochastically forced linear
systems is formulated as a state-feedback synthesis problem.
Parsimony in the arising optimization problems is dictated
by penalizing the control effort, in addition to the number
of control input channels, which is achieved by promoting
row-sparsity of the feedback gain matrix. To efficiently solve
covariance completion problems of large size we develop
customized algorithms using augmented Lagrangian-based
methods. Our algorithms utilize the Lyapunov-like constraint
to express one variable in terms of the other. In addition,
proximal methods are used to handle the lack of differentia-
bility of the objective function. Numerical experiments show
that the method of multipliers, which utilizes the proximal
gradient method to solve its subproblem, performs much
better than the splitting methods considered in this paper.
In ongoing work, we will investigate solving this problem
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via recently developed second order methods [36], [37]
and quasi-Newton methods [35] for nonsmooth composite
problems.

In this work, row sparsity is promoted by penalizing a
weighted sum of row norms of the feedback gain matrix.
While we note that iterative reweighting [38] can improve
the row-sparsity patterns determined by this convex approx-
imation of cardinality, the efficacy of more refined approx-
imations, namely low-rank inducing norms [39], [40], for
which proximal operators can be efficiently computed, is a
subject of future research.

APPENDIX

At the kth iteration the gradient of F with respect to Y
is given by,

∇F (Y ) = 2Y kX−1 − 2B∗(W2 + ρW3 − W1),

where W1, W2, and W3 are solutions to the following
Lyapunov equations

A∗W1 + W1A + X−1Y k∗Y kX−1 = 0

A∗W2 + W2A + A†
2

(
Λk
)

= 0

A∗W3 + W3A + A†
2

(
A2

(
X(Y k)

)
− G

)
= 0

Here, X−1 denotes the inverse of X(Y k) and the adjoint of
the operator A2 is given by

A†
2 (Λ) := C∗ (E ◦ Λ)C.
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