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Abstract— We study the optimal design of sparse and block
sparse feedback gains for spatially-invariant systems on a circle.
For this class of systems, the state-space matrices are jointly
diagonalizable via the discrete Fourier transform. We exploit
this structure to develop an ADMM-based algorithm that
significantly reduces the computational complexity relative to
standard approaches. Specifically, the complexity of the devel-
oped algorithm scales linearly with the number of subsystems.
This is in contrast to a cubic scaling when circulant structure
is not exploited. Two examples are provided to illustrate the
effectiveness of the developed approach.

Index Terms— Alternating direction method of multipliers,
Fourier transform, H2 norm, sparsity-promoting optimal con-
trol, spatially-invariant systems, structured feedback control.

I. INTRODUCTION

Optimal design of sparse feedback gains has recently
received considerable attention [1]–[8]. Research efforts have
focused on developing efficient algorithms to identify con-
troller structures that strike a balance between quadratic per-
formance of distributed systems and sparsity of controllers.

In [1] optimal structured feedback gains have been sought
via the augmented Lagrangian approach. In [2], alternating
direction method of multipliers (ADMM) was employed
for the design of sparse and block sparse feedback gains.
The developed algorithm provides a sequence of feedback
gains that traces the optimal trade-off curve between the
closed-loop H2 performance and sparsity of the feedback
matrix. In [3]–[5], it was shown that for systems with single-
integrator dynamics and consensus networks, the sparsity-
promoting optimal control problem can be cast as a semidef-
inite program. Similar results also hold for a class of syn-
chronization networks [6]. In [7], an LMI-based approach
was used to design structured dynamic output feedback
controllers subject to a given H∞ performance. In [8], a
convex characterization was provided for an optimal design
of row-sparse feedback gains.

In this paper, we consider the design of sparse and block
sparse feedback gains for spatially-invariant systems on a
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circle. This class of systems arises in a variety of appli-
cations including formation of vehicles [9], [10], satellite
formation flying [11], and cyclic pursuit [12]. For this class
of distributed systems, the state-space representation matrices
can be jointly diagonalized via the discrete Fourier trans-
form [13]. We exploit this structure to significantly reduce
the computational complexity of our algorithm. Specifically,
for distributed systems with N subsystems, the complexity
of the developed algorithm scales linearly with N . This is
in contrast to a cubic scaling with N when the circulant
structure is not exploited.

Our work builds on the sparsity-promoting framework
developed in [2], [3]. In particular, we augment the objective
function with a sparsity-promoting regularizer and employ
the ADMM algorithm to achieve an optimal tradeoff between
performance and sparsity. In contrast to [2], we focus on a
particular class of systems that are governed by spatially-
invariant dynamics over a circle. By confining our attention
to the class of circulant and block circulant feedback gain
matrices, we exploit structure of this problem to gain com-
putational efficiency.

The paper is organized as follows. Section II formulates
the sparsity-promoting optimal control problem. Section III
describes the ADMM algorithm used to design optimal con-
trollers for spatially-invariant systems with circulant struc-
ture. Section IV extends the design method to systems with
block circulant structure. Section V provides examples to
illustrate the effectiveness of our approach, and Section VI
concludes with a summary of our work.

II. PROBLEM FORMULATION

Consider the state-space representation of a spatially in-
variant system over a circle [13]

H :=

{
ẋ = Ax + B1d + B2u

u = −Fx
(1)

where x ∈ RN is the state vector, d ∈ RN is the stochastic
disturbance, u ∈ RN is the control input, and {A, B1, B2,
F} are N×N circulant matrices. The generalization to block
circulant matrices of appropriate dimensions is presented in
Section IV.

We consider the design of a sparse feedback gain matrix F
that minimizes the steady-state variance amplification (i.e.,
the H2 norm) of the closed-loop system

J(F ) := lim
t→∞

E
(
xT (t)Qx(t) + uT (t)Ru(t)

)
where E is the expectation operator and Q � 0 and R � 0
are also circulant matrices. When (A,B2) is stabilizable and
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(A,Q1/2) is detectable, the optimal state feedback gain is
given by

F = R−1BT2 P

where P is the unique positive definite solution of the
algebraic Riccati equation

ATP + PA + Q − PB2R
−1BT2 P = 0.

The feedback matrix F is in general a dense matrix. In [2],
the authors employed sparsity-promoting penalty functions to
design sparse feedback gains. The design process consists
of two steps. The first step aims at identifying sparsity
structures that strike a balance between the H2 performance
and feedback gain sparsity. The second step aims at finding
the optimal feedback gain subject to the identified sparsity
structure.

In this paper, we examine the same design problem in the
context of spatially-invariant systems on a circle. For this
class of systems, we exploit the resulting circulant structure
and significantly improve computational efficiency of the
algorithms developed in [2].

A. Diagonalization via Fourier transform

Let Φ be the discrete Fourier matrix of size N × N . By
introducing the change of variables x̂ := Φx, û := Φu, and
d̂ := Φd, the system H can be written as

Ĥ :=

{
˙̂x = Âx̂+ B̂1d̂+ B̂2û

û = − F̂ x̂

where F̂ is a diagonal matrix determined by

F̂ := ΦFΦ∗.

Similarly, {Â, B̂1, B̂2} are diagonal matrices obtained using
the discrete Fourier transform. The H2 norm of the closed-
loop system is determined by [13]

J(F̂ ) =

{
trace

(
B̂∗1 P̂ B̂1

)
, F̂ stabilizing

∞, otherwise

where P̂ is the closed-loop observability Gramian,

(Â− B̂2F̂ )∗P̂ + P̂ (Â− B̂2F̂ ) = − (Q̂+ F̂ ∗R̂F̂ ). (2)

Since all matrices in (2) are diagonal matrices of sizes
N ×N , the Lyapunov equation (2) can be solved with O(N)
operations. This is in contrast to O(N3) operations required
to solve Lyapunov equations with dense matrices.

Furthermore, J can be expressed as a function of the
diagonal elements {F̂i}Ni=1 of the diagonal matrix F̂

J(F̂ ) =

N∑
i=1

Ji(F̂i) =

N∑
i=1

B̂T1iP̂iB̂1i (3)

where the ith diagonal element P̂i of P̂ is determined by the
solution to the (scalar) Lyapunov equation

(Âi − B̂2iF̂i)
∗P̂i + P̂i(Âi − B̂2iF̂i) = − (Q̂i + F̂ ∗i R̂iF̂i).

(4)

B. Design of sparse feedback gains

Sparse feedback gains have been identified in [2] by
augmenting the H2 norm with the weighted `1 norm of the
feedback gain matrix

g(F ) :=
∑
i, j

Wij |Fij |

with Wij > 0. The weighted `1 norm was originally used to
promote sparsity in signal recovery [14].

The sparsity-promoting optimal control problem is thus
given by

minimize J(F̂ ) + γ g(F )

subject to F̂ = ΦFΦ∗
(5)

where γ > 0 is a sparsity-promoting parameter.
After a sparsity structure S has been identified from the

solution to (5), an optimal feedback gain is obtained by
optimizing the controller over the structural constraint set
S,

minimize J(F̂ )

subject to F̂ = ΦFΦ∗, F ∈ S.
(6)

III. EXPLOITING STRUCTURE VIA ADMM

A. Alternating direction method of multipliers

The sparsity-promoting control problem (5) is challenging
because it is in general a non-convex and non-smooth opti-
mization problem [2]. However, J(F̂ ) is a smooth function
of the diagonal matrix F̂ , and g(F ) is a convex and separable
function in elements of the feedback gain F . By using the
alternating direction method of multipliers (ADMM), it is
possible to take advantage of smoothness of J and convexity
of g. This is achieved by splitting the optimization into two
subproblems.

We form the augmented Lagrangian function of the con-
strained problem (5)

Lρ(F̂ , F,Λ) = J(F̂ ) + γg(F ) + trace (ΛT (F̂ − ΦFΦ∗))

+
ρ

2
‖F̂ − ΦFΦ∗‖2F

where Λ is the dual variable, ρ is a positive scalar parameter,
and ‖ · ‖2F is the Frobenius norm. The constrained optimiza-
tion problem (5) is solved using the following sequence of
iterations

F̂ k+1 := arg min
F̂

Lρ(F̂ , F k,Λk) (7a)

F k+1 := arg min
F

Lρ(F̂ k+1, F,Λk) (7b)

Λk+1 := Λk + ρ(F̂ k+1 − ΦF k+1Φ∗) (7c)

until the primal and dual residues are sufficiently small [15]

‖F̂ k − ΦF kΦ∗‖F ≤ εprim, ‖F k+1 − F k‖F ≤ εdual.

We next show that both the F̂ -minimization step (7a) and
the F -minimization step (7b) can be decomposed into a
sequence of optimization problems with scalar variables. As
a consequence, their solutions can be computed efficiently.
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In particular, the computational complexity for both subprob-
lems grows linearly with N .

B. F̂ -minimization step (7a)

Using completion of squares, it can be shown that the min-
imization of the augmented Lagrangian over F̂ is equivalent
to

minimize J(F̂ ) + (ρ/2)‖F̂ − Ûk‖2F (8)

where
Ûk = ΦF kΦ∗ − (1/ρ)Λk.

Here, the optimization variable is F̂ . Since F k is a circulant
matrix and since Λk is a diagonal matrix by construc-
tion (cf. (7c)), we conclude that Ûk is a diagonal matrix.
Therefore, problem (8) can be decomposed into N optimiza-
tion problems with respect to the diagonal elements F̂i

minimize
N∑
i=1

(
Ji(F̂i) + (ρ/2)(F̂i − Ûki )2

)
(9)

where Ji(F̂i) is given by (3). For each diagonal element F̂i,
the scalar problem (9) can be solved analytically. Specifi-
cally, setting the derivative of the objective function in (9)
to zero yields a set of N cubic equations for each F̂i. The
roots of these cubic equations can be computed efficiently.

C. F -minimization step (7b)

By completing the squares with respect to F , minimization
of the augmented Lagrangian over F amounts to

minimize γg(F ) + (ρ/2)‖F − V k‖2F (10)

where
V k = F̂ k+1 + (1/ρ)Λk.

Here, the optimization variable is F . When g is the weighted
`1 norm

g(F ) =
∑
i,j

Wij |Fij |

with Wij > 0, the solution to (10) is determined by the
soft-thresholding operator [2]

F k+1
ij =

{
(1− α/|Vij |)Vij , |Vij | > α

0, |Vij | ≤ α

where α = (γ/ρ)Wij .

D. Structured optimal control problem

The solution to (5) yields feedback gain F belonging to
the identified sparsity structure S. We next minimize the H2

norm over a fixed sparsity structure F ∈ S. To this end, we
use the indicator function

φ(F ) :=

{
0, if F ∈ S

+∞, otherwise

to rewrite the structured H2 problem (6) as

minimize J(F̂ ) + φ(F )

subject to F̂ − ΦFΦ∗ = 0.
(11)

Note that (11) is similar to (5) except for the difference that
the sparsity-promoting function g is replaced by the indicator
function φ.

We use the ADMM algorithm (7) in which the F̂ -
minimization step (7a) is the same as described in Sec-
tion III-B. On the other hand, the F -minimization step (7b)
amounts to

minimize
ρ

2
‖F − V k‖2F

subject to F ∈ S.

The solution to this problem is a projection of V k on the
sparsity structure S. Specifically,

F k+1 = V k ◦ IS

where ◦ is the elementwise product of two matrices and IS
is the structural identity,

IS ij =

{
1, if Fij is a free variable

0, otherwise.

IV. BLOCK CIRCULANT SYSTEMS

We next turn to the design of block sparse feedback gains
for spatially invariant systems with block circulant structure.
While the design procedure is similar to the one described
in Section III, we note the following differences:

1) Instead of being a diagonal matrix, the discrete Fourier
transform brings the block circulant feedback gain F
to a block diagonal matrix F̂ .

2) Instead of having analytical solutions for the F̂ -
minimization step (7a), we use an iterative scheme to
compute an optimal solution.

3) Finally, instead of using the elementwise soft-
thresholding operator, the block-wise counterpart is
used in the F -minimization step (7b).

In what follows, we provide details for each of these three
items.

A. Block diagonalization via Fourier transform

Let the spatially invariant system be composed of N
subsystems with each subsystem having n states. Then the
state vector x ∈ RnN is composed of a group of N
subvectors xi ∈ Rn which denotes the state of the ith
subsystem. The matrix A ∈ RnN×nN is block circulant with
blocks of the size n×n. For example, when N = 3 we have

A =

 A0 A1 A−1
A−1 A0 A1

A1 A−1 A0


where the blocks {A0, A−1, A1} ∈ Rn×n can be arbitrary
matrices. Similarly, B1 and B2 are block circulant with
blocks of the sizes n× q and n×m, respectively, where
q is the number of disturbances per subsystem and m is the
number of control inputs per subsystem.

Block circulant matrices are block diagonalizable by ap-
propriate discrete Fourier transform [13]. Let the block
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Fourier matrix be denoted as

Φa := Φ⊗ Ia

where Ia is the a × a identity matrix and Φ is the N ×N
discrete Fourier matrix. By introducing the change of vari-
ables x̂ := Φrx, û := Φmu, and d̂ := Φqd, system (1) can
be written as

Ĥ :=

{
˙̂x = Âx̂+ B̂1d̂+ B̂2û

u = − F̂ x̂,

where block diagonal matrices {Â, B̂1, B̂2, F̂} are given by

Â := ΦnAΦ∗n, B̂1 := ΦnB1Φ∗q
B̂2 := ΦnB2Φ∗m, F̂ := ΦmFΦ∗n.

Similar to the scalar circulant case, theH2 norm J is given
by (3) where P̂i is the ith diagonal block of P̂ determined
from the Lyapunov equation (4).

B. Solving the F̂ -minimization problem (7a)

For block circulant matrices, the F̂ -minimization step (7a)
no longer has a simple analytical solution as in the scalar
circulant case. This is because setting the derivative of the
objective function in (7a) results in a set of coupled matrix
equations [2].

Following [2], we use the Anderson-Moore method to
solve problem (7a). This is an iterative scheme that solves
two Lyapunov and one Sylvester equation at each iteration.
For a fixed F̂i, two Lyapunov equations are first solved

(Âi − B̂2iF̂i)L̂i + L̂i(Âi − B̂2iF̂i)
∗ = −B̂1iB̂

∗
1i

(Âi − B̂2iF̂i)
∗P̂i + P̂i(Âi − B̂2iF̂i) = −(Q̂i + F̂ ∗i R̂iF̂i)

for L̂i and P̂i, and then the Sylvester equation

2(R̂iF̂i − B̂∗2iP̂i)L̂i + ρ(F̂i − Ûki ) = 0

is solved for F̂i. It can be shown that these iterations
move F̂i in a descent direction [2]. Thus, in conjunction
with appropriate line-search, the Anderson-Moore method
converges to a solution to (8).

Without exploiting the block circulant structure in (1),
the complexity of solving each step of the Anderson-Moore
method scales as O(n3N3). Here, N is the number of
subsystems and n is the number of states of each subsystem.
By exploiting the block-diagonal structure of Ĥ , we perform
the Anderson-Moore method on each block in (9), so the
complexity of each step scales as O(n3N). Note that the
computational complexity scales linearly with respect to the
number of subsystems N .

C. Solving the F -minimization problem (7b)

The appropriate sparsity-promoting function g for block
sparsity is the weighted sum-of-norms [15]

g(F ) =
∑
i,j

Wij‖Fij‖F .

For each block Fij , the solution to (7b) is given by the block
soft-thresholding operator [2]

F k+1
ij =

(1− α/‖Vij‖F )Vij , ‖Vij‖F > α

0, ‖Vij‖F ≤ α.

V. EXAMPLES

In this section, we provide two examples to demonstrate
the effectiveness of the developed ADMM-based algorithm.
In both examples, we show that the computational complex-
ity scales as a linear function of the number of subsystems.

A. Circulant structure

Consider a first-order system with N = 5 nodes distributed
over a circle. The dynamics of the system are determined by

A =


−2 1 0 0 1
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
1 0 0 1 −2


and B1, B2, Q, R are identity matrices of the size N ×N .
The centralized gain is a circulant matrix

Fc =


0.3838 0.1961 0.1120 0.1120 0.1961
0.1961 0.3838 0.1961 0.1120 0.1120
0.1120 0.1961 0.3838 0.1961 0.1120
0.1120 0.1120 0.1961 0.3838 0.1961
0.1961 0.1120 0.1120 0.1961 0.3838

 .
For this example, γ is swept logarithmically from 0.001 to 5.
The difference between the initial centralized feedback gain
and the sparse feedback gain Fsp corresponding to γ = 5 is
examined. The sparse gain is a diagonal matrix

Fsp =


0.6848 0 0 0 0

0 0.6848 0 0 0
0 0 0.6848 0 0
0 0 0 0.6848 0
0 0 0 0 0.6848

 .
The level of sparsity and corresponding performance of the

optimal feedback gain F are shown in Fig. 1 for different
values of γ.

We next consider the computational complexity of the
ADMM algorithm with respect to the number of subsystems
N . As shown in Fig. 2a, we observe a linear scaling of
computational time with respect to N . In Fig. 2b, the scaling
of our algorithm for spatially-invariant systems is compared
to the algorithm developed in [2] without exploiting circulant
structure.
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Fig. 1: (a) The number of nonzero elements of F compared
to that of the centralized gain Fc. (b) The H2 performance
deteriorates gracefully with increase in γ.
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Fig. 2: (a) The linear scaling of computational time with
the number of subsystems N . (b) The comparison between
the linear scaling (o) for the algorithm developed in this
paper and the cubic scaling (•) using the algorithm developed
in [2].

B. Block circulant structure
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Fig. 3: (a)-(b) The communication graphs of controllers
obtained for different values of γ. (c) The optimal trade-
off curve between the performance degradation and sparsity
level relative to Fc.

We next provide an example that illustrates the perfor-
mance of our algorithm on a block circulant system. Let
N = 15 subsystems be evenly distributed on a circle and
let each subsystem be an unstable second order system. The
dynamics of a subsystem are coupled with the dynamics of
other subsystems through an exponentially decaying function
of the Euclidean distance α(i, j) between them [16][

ṗi
v̇i

]
=

[
1 1
1 2

] [
pi
vi

]
+
∑
j 6=i

eα(i,j)
[
pj
vj

]
+

[
0
1

]
(di + ui).

The state and control weights Q and R are identity matrices.
The values of γ are chosen at 48 logarithmically spaced
points between 0.01 and 68.66.

As γ increases, the communication graphs become sparser
and sparser; see Fig. 3 for two different identified commu-
nication graphs. The trade-off between optimal performance
and sparsity is shown in Fig. 3c.

Similar to the case for scalar systems, the ADMM al-
gorithm scales linearly with the number of subsystems N ,
as opposed to the cubic scaling for the method that does
not exploit circulant structure; see Fig. 4. For this case, the
method developed in [2] is observed to be faster for N < 40.
For large enough number of subsystems, the overhead of per-
forming additional Fourier Transforms becomes insignificant.
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Fig. 4: The computation time vs the number of subsystems
N for the ADMM algorithms that exploit the block circulant
structure (◦) and that does not exploit structure (•).

VI. CONCLUDING REMARKS

We consider the design of sparse and block sparse feed-
back gains for spatially invariant systems on a circle. By
exploiting the circulant structure, we significantly improve
the computational efficiency of the ADMM algorithm. In
particular, the algorithmic complexity scales linearly with
the number of subsystems as opposed to a cubic dependence
when the structure is not exploited. The ADMM algorithm
has been implemented in MATLAB.

The developed method is most efficient in applications
with a large number of subsystems where each subsystem
has a small number of states. Since both these features are
commonly encountered in multi-agent systems [17], consen-
sus and synchronization networks, the developed approach
may find use in a host of emerging applications.
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